File size: 11,982 Bytes
2dbecff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06999a6
 
 
2dbecff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/bin/env python
# -*- coding: utf-8 -*-
########################################################################
#
#  DiffWave: A Versatile Diffusion Model for Audio Synthesis
#  (https://arxiv.org/abs/2009.09761)
#  Modified from https://github.com/philsyn/DiffWave-Vocoder
#
#  Author: Max W. Y. Lam ([email protected])
#  Copyright (c) 2021Tencent. All Rights Reserved
#
########################################################################


import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm

from diffusers.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import DiffusionPipeline


def calc_diffusion_step_embedding(diffusion_steps, diffusion_step_embed_dim_in):
    """
    Embed a diffusion step $t$ into a higher dimensional space
        E.g. the embedding vector in the 128-dimensional space is
        [sin(t * 10^(0*4/63)), ... , sin(t * 10^(63*4/63)),
         cos(t * 10^(0*4/63)), ... , cos(t * 10^(63*4/63))]

    Parameters:
        diffusion_steps (torch.long tensor, shape=(batchsize, 1)):
                                    diffusion steps for batch data
        diffusion_step_embed_dim_in (int, default=128):
                                    dimensionality of the embedding space for discrete diffusion steps
    Returns:
        the embedding vectors (torch.tensor, shape=(batchsize, diffusion_step_embed_dim_in)):
    """

    assert diffusion_step_embed_dim_in % 2 == 0

    half_dim = diffusion_step_embed_dim_in // 2
    _embed = np.log(10000) / (half_dim - 1)
    _embed = torch.exp(torch.arange(half_dim) * -_embed).cuda()
    _embed = diffusion_steps * _embed
    diffusion_step_embed = torch.cat((torch.sin(_embed),
                                      torch.cos(_embed)), 1)
    return diffusion_step_embed


"""
Below scripts were borrowed from
https://github.com/philsyn/DiffWave-Vocoder/blob/master/WaveNet.py
"""


def swish(x):
    return x * torch.sigmoid(x)


# dilated conv layer with kaiming_normal initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py
class Conv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1):
        super().__init__()
        self.padding = dilation * (kernel_size - 1) // 2
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
                              dilation=dilation, padding=self.padding)
        self.conv = nn.utils.weight_norm(self.conv)
        nn.init.kaiming_normal_(self.conv.weight)

    def forward(self, x):
        out = self.conv(x)
        return out


# conv1x1 layer with zero initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py but the scale parameter is removed
class ZeroConv1d(nn.Module):
    def __init__(self, in_channel, out_channel):
        super().__init__()
        self.conv = nn.Conv1d(in_channel, out_channel, kernel_size=1, padding=0)
        self.conv.weight.data.zero_()
        self.conv.bias.data.zero_()

    def forward(self, x):
        out = self.conv(x)
        return out


# every residual block (named residual layer in paper)
# contains one noncausal dilated conv
class ResidualBlock(nn.Module):
    def __init__(self, res_channels, skip_channels, dilation,
                 diffusion_step_embed_dim_out):
        super().__init__()
        self.res_channels = res_channels

        # Use a FC layer for diffusion step embedding
        self.fc_t = nn.Linear(diffusion_step_embed_dim_out, self.res_channels)

        # Dilated conv layer
        self.dilated_conv_layer = Conv(self.res_channels, 2 * self.res_channels,
                                       kernel_size=3, dilation=dilation)

        # Add mel spectrogram upsampler and conditioner conv1x1 layer
        self.upsample_conv2d = nn.ModuleList()
        for s in [16, 16]:
            conv_trans2d = nn.ConvTranspose2d(1, 1, (3, 2 * s),
                                              padding=(1, s // 2),
                                              stride=(1, s))
            conv_trans2d = nn.utils.weight_norm(conv_trans2d)
            nn.init.kaiming_normal_(conv_trans2d.weight)
            self.upsample_conv2d.append(conv_trans2d)

        # 80 is mel bands
        self.mel_conv = Conv(80, 2 * self.res_channels, kernel_size=1)

        # Residual conv1x1 layer, connect to next residual layer
        self.res_conv = nn.Conv1d(res_channels, res_channels, kernel_size=1)
        self.res_conv = nn.utils.weight_norm(self.res_conv)
        nn.init.kaiming_normal_(self.res_conv.weight)

        # Skip conv1x1 layer, add to all skip outputs through skip connections
        self.skip_conv = nn.Conv1d(res_channels, skip_channels, kernel_size=1)
        self.skip_conv = nn.utils.weight_norm(self.skip_conv)
        nn.init.kaiming_normal_(self.skip_conv.weight)

    def forward(self, input_data):
        x, mel_spec, diffusion_step_embed = input_data
        h = x
        batch_size, n_channels, seq_len = x.shape
        assert n_channels == self.res_channels

        # Add in diffusion step embedding
        part_t = self.fc_t(diffusion_step_embed)
        part_t = part_t.view([batch_size, self.res_channels, 1])
        h += part_t

        # Dilated conv layer
        h = self.dilated_conv_layer(h)

        # Upsample spectrogram to size of audio
        mel_spec = torch.unsqueeze(mel_spec, dim=1)
        mel_spec = F.leaky_relu(self.upsample_conv2d[0](mel_spec), 0.4, inplace=False)
        mel_spec = F.leaky_relu(self.upsample_conv2d[1](mel_spec), 0.4, inplace=False)
        mel_spec = torch.squeeze(mel_spec, dim=1)

        assert mel_spec.size(2) >= seq_len
        if mel_spec.size(2) > seq_len:
            mel_spec = mel_spec[:, :, :seq_len]

        mel_spec = self.mel_conv(mel_spec)
        h += mel_spec

        # Gated-tanh nonlinearity
        out = torch.tanh(h[:, :self.res_channels, :]) * torch.sigmoid(h[:, self.res_channels:, :])

        # Residual and skip outputs
        res = self.res_conv(out)
        assert x.shape == res.shape
        skip = self.skip_conv(out)

        # Normalize for training stability
        return (x + res) * math.sqrt(0.5), skip


class ResidualGroup(nn.Module):
    def __init__(self, res_channels, skip_channels, num_res_layers, dilation_cycle,
                 diffusion_step_embed_dim_in,
                 diffusion_step_embed_dim_mid,
                 diffusion_step_embed_dim_out):
        super().__init__()
        self.num_res_layers = num_res_layers
        self.diffusion_step_embed_dim_in = diffusion_step_embed_dim_in

        # Use the shared two FC layers for diffusion step embedding
        self.fc_t1 = nn.Linear(diffusion_step_embed_dim_in, diffusion_step_embed_dim_mid)
        self.fc_t2 = nn.Linear(diffusion_step_embed_dim_mid, diffusion_step_embed_dim_out)

        # Stack all residual blocks with dilations 1, 2, ... , 512, ... , 1, 2, ..., 512
        self.residual_blocks = nn.ModuleList()
        for n in range(self.num_res_layers):
            self.residual_blocks.append(
                ResidualBlock(res_channels, skip_channels,
                               dilation=2 ** (n % dilation_cycle),
                               diffusion_step_embed_dim_out=diffusion_step_embed_dim_out))

    def forward(self, input_data):
        x, mel_spectrogram, diffusion_steps = input_data

        # Embed diffusion step t
        diffusion_step_embed = calc_diffusion_step_embedding(
            diffusion_steps, self.diffusion_step_embed_dim_in)
        diffusion_step_embed = swish(self.fc_t1(diffusion_step_embed))
        diffusion_step_embed = swish(self.fc_t2(diffusion_step_embed))

        # Pass all residual layers
        h = x
        skip = 0
        for n in range(self.num_res_layers):
            # Use the output from last residual layer
            h, skip_n = self.residual_blocks[n]((h, mel_spectrogram, diffusion_step_embed))
            # Accumulate all skip outputs
            skip += skip_n

        # Normalize for training stability
        return skip * math.sqrt(1.0 / self.num_res_layers)


class DiffWave(ModelMixin, ConfigMixin):
    def __init__(
        self,
        in_channels=1,
        res_channels=128,
        skip_channels=128,
        out_channels=1,
        num_res_layers=30,
        dilation_cycle=10,
        diffusion_step_embed_dim_in=128,
        diffusion_step_embed_dim_mid=512,
        diffusion_step_embed_dim_out=512,
    ):
        super().__init__()

        # register all init arguments with self.register
        self.register(
            in_channels=in_channels,
            res_channels=res_channels,
            skip_channels=skip_channels,
            out_channels=out_channels,
            num_res_layers=num_res_layers,
            dilation_cycle=dilation_cycle,
            diffusion_step_embed_dim_in=diffusion_step_embed_dim_in,
            diffusion_step_embed_dim_mid=diffusion_step_embed_dim_mid,
            diffusion_step_embed_dim_out=diffusion_step_embed_dim_out,
        )


        # Initial conv1x1 with relu
        self.init_conv = nn.Sequential(Conv(in_channels, res_channels, kernel_size=1), nn.ReLU(inplace=False))
        # All residual layers
        self.residual_layer = ResidualGroup(res_channels,
                                            skip_channels,
                                            num_res_layers,
                                            dilation_cycle,
                                            diffusion_step_embed_dim_in,
                                            diffusion_step_embed_dim_mid,
                                            diffusion_step_embed_dim_out)
        # Final conv1x1 -> relu -> zeroconv1x1
        self.final_conv = nn.Sequential(Conv(skip_channels, skip_channels, kernel_size=1),
                                        nn.ReLU(inplace=False), ZeroConv1d(skip_channels, out_channels))

    def forward(self, input_data):
        audio, mel_spectrogram, diffusion_steps = input_data
        x = audio
        x = self.init_conv(x).clone()
        x = self.residual_layer((x, mel_spectrogram, diffusion_steps))
        return self.final_conv(x)


class BDDM(DiffusionPipeline):
    def __init__(self, diffwave, noise_scheduler):
        super().__init__()
        noise_scheduler = noise_scheduler.set_format("pt")
        self.register_modules(diffwave=diffwave, noise_scheduler=noise_scheduler)
    
    @torch.no_grad()
    def __call__(self, mel_spectrogram, generator, torch_device=None):
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"
        
        self.diffwave.to(torch_device)
        
        mel_spectrogram = mel_spectrogram.to(torch_device)
        audio_length = mel_spectrogram.size(-1) * 256
        audio_size = (1, 1, audio_length)

        # Sample gaussian noise to begin loop
        audio = torch.normal(0, 1, size=audio_size, generator=generator).to(torch_device)

        timestep_values = self.noise_scheduler.timestep_values
        num_prediction_steps = len(self.noise_scheduler)
        for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
            # 1. predict noise residual
            ts = (torch.tensor(timestep_values[t]) * torch.ones((1, 1))).to(torch_device)
            residual = self.diffwave((audio, mel_spectrogram, ts))

            # 2. predict previous mean of audio x_t-1
            pred_prev_audio = self.noise_scheduler.step(residual, audio, t)

            # 3. optionally sample variance
            variance = 0
            if t > 0:
                noise = torch.normal(0, 1, size=audio_size, generator=generator).to(torch_device)
                variance = self.noise_scheduler.get_variance(t).sqrt() * noise

            # 4. set current audio to prev_audio: x_t -> x_t-1
            audio = pred_prev_audio + variance

        return audio