File size: 11,982 Bytes
2dbecff 06999a6 2dbecff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
#!/bin/env python
# -*- coding: utf-8 -*-
########################################################################
#
# DiffWave: A Versatile Diffusion Model for Audio Synthesis
# (https://arxiv.org/abs/2009.09761)
# Modified from https://github.com/philsyn/DiffWave-Vocoder
#
# Author: Max W. Y. Lam ([email protected])
# Copyright (c) 2021Tencent. All Rights Reserved
#
########################################################################
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from diffusers.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import DiffusionPipeline
def calc_diffusion_step_embedding(diffusion_steps, diffusion_step_embed_dim_in):
"""
Embed a diffusion step $t$ into a higher dimensional space
E.g. the embedding vector in the 128-dimensional space is
[sin(t * 10^(0*4/63)), ... , sin(t * 10^(63*4/63)),
cos(t * 10^(0*4/63)), ... , cos(t * 10^(63*4/63))]
Parameters:
diffusion_steps (torch.long tensor, shape=(batchsize, 1)):
diffusion steps for batch data
diffusion_step_embed_dim_in (int, default=128):
dimensionality of the embedding space for discrete diffusion steps
Returns:
the embedding vectors (torch.tensor, shape=(batchsize, diffusion_step_embed_dim_in)):
"""
assert diffusion_step_embed_dim_in % 2 == 0
half_dim = diffusion_step_embed_dim_in // 2
_embed = np.log(10000) / (half_dim - 1)
_embed = torch.exp(torch.arange(half_dim) * -_embed).cuda()
_embed = diffusion_steps * _embed
diffusion_step_embed = torch.cat((torch.sin(_embed),
torch.cos(_embed)), 1)
return diffusion_step_embed
"""
Below scripts were borrowed from
https://github.com/philsyn/DiffWave-Vocoder/blob/master/WaveNet.py
"""
def swish(x):
return x * torch.sigmoid(x)
# dilated conv layer with kaiming_normal initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py
class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1):
super().__init__()
self.padding = dilation * (kernel_size - 1) // 2
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
dilation=dilation, padding=self.padding)
self.conv = nn.utils.weight_norm(self.conv)
nn.init.kaiming_normal_(self.conv.weight)
def forward(self, x):
out = self.conv(x)
return out
# conv1x1 layer with zero initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py but the scale parameter is removed
class ZeroConv1d(nn.Module):
def __init__(self, in_channel, out_channel):
super().__init__()
self.conv = nn.Conv1d(in_channel, out_channel, kernel_size=1, padding=0)
self.conv.weight.data.zero_()
self.conv.bias.data.zero_()
def forward(self, x):
out = self.conv(x)
return out
# every residual block (named residual layer in paper)
# contains one noncausal dilated conv
class ResidualBlock(nn.Module):
def __init__(self, res_channels, skip_channels, dilation,
diffusion_step_embed_dim_out):
super().__init__()
self.res_channels = res_channels
# Use a FC layer for diffusion step embedding
self.fc_t = nn.Linear(diffusion_step_embed_dim_out, self.res_channels)
# Dilated conv layer
self.dilated_conv_layer = Conv(self.res_channels, 2 * self.res_channels,
kernel_size=3, dilation=dilation)
# Add mel spectrogram upsampler and conditioner conv1x1 layer
self.upsample_conv2d = nn.ModuleList()
for s in [16, 16]:
conv_trans2d = nn.ConvTranspose2d(1, 1, (3, 2 * s),
padding=(1, s // 2),
stride=(1, s))
conv_trans2d = nn.utils.weight_norm(conv_trans2d)
nn.init.kaiming_normal_(conv_trans2d.weight)
self.upsample_conv2d.append(conv_trans2d)
# 80 is mel bands
self.mel_conv = Conv(80, 2 * self.res_channels, kernel_size=1)
# Residual conv1x1 layer, connect to next residual layer
self.res_conv = nn.Conv1d(res_channels, res_channels, kernel_size=1)
self.res_conv = nn.utils.weight_norm(self.res_conv)
nn.init.kaiming_normal_(self.res_conv.weight)
# Skip conv1x1 layer, add to all skip outputs through skip connections
self.skip_conv = nn.Conv1d(res_channels, skip_channels, kernel_size=1)
self.skip_conv = nn.utils.weight_norm(self.skip_conv)
nn.init.kaiming_normal_(self.skip_conv.weight)
def forward(self, input_data):
x, mel_spec, diffusion_step_embed = input_data
h = x
batch_size, n_channels, seq_len = x.shape
assert n_channels == self.res_channels
# Add in diffusion step embedding
part_t = self.fc_t(diffusion_step_embed)
part_t = part_t.view([batch_size, self.res_channels, 1])
h += part_t
# Dilated conv layer
h = self.dilated_conv_layer(h)
# Upsample spectrogram to size of audio
mel_spec = torch.unsqueeze(mel_spec, dim=1)
mel_spec = F.leaky_relu(self.upsample_conv2d[0](mel_spec), 0.4, inplace=False)
mel_spec = F.leaky_relu(self.upsample_conv2d[1](mel_spec), 0.4, inplace=False)
mel_spec = torch.squeeze(mel_spec, dim=1)
assert mel_spec.size(2) >= seq_len
if mel_spec.size(2) > seq_len:
mel_spec = mel_spec[:, :, :seq_len]
mel_spec = self.mel_conv(mel_spec)
h += mel_spec
# Gated-tanh nonlinearity
out = torch.tanh(h[:, :self.res_channels, :]) * torch.sigmoid(h[:, self.res_channels:, :])
# Residual and skip outputs
res = self.res_conv(out)
assert x.shape == res.shape
skip = self.skip_conv(out)
# Normalize for training stability
return (x + res) * math.sqrt(0.5), skip
class ResidualGroup(nn.Module):
def __init__(self, res_channels, skip_channels, num_res_layers, dilation_cycle,
diffusion_step_embed_dim_in,
diffusion_step_embed_dim_mid,
diffusion_step_embed_dim_out):
super().__init__()
self.num_res_layers = num_res_layers
self.diffusion_step_embed_dim_in = diffusion_step_embed_dim_in
# Use the shared two FC layers for diffusion step embedding
self.fc_t1 = nn.Linear(diffusion_step_embed_dim_in, diffusion_step_embed_dim_mid)
self.fc_t2 = nn.Linear(diffusion_step_embed_dim_mid, diffusion_step_embed_dim_out)
# Stack all residual blocks with dilations 1, 2, ... , 512, ... , 1, 2, ..., 512
self.residual_blocks = nn.ModuleList()
for n in range(self.num_res_layers):
self.residual_blocks.append(
ResidualBlock(res_channels, skip_channels,
dilation=2 ** (n % dilation_cycle),
diffusion_step_embed_dim_out=diffusion_step_embed_dim_out))
def forward(self, input_data):
x, mel_spectrogram, diffusion_steps = input_data
# Embed diffusion step t
diffusion_step_embed = calc_diffusion_step_embedding(
diffusion_steps, self.diffusion_step_embed_dim_in)
diffusion_step_embed = swish(self.fc_t1(diffusion_step_embed))
diffusion_step_embed = swish(self.fc_t2(diffusion_step_embed))
# Pass all residual layers
h = x
skip = 0
for n in range(self.num_res_layers):
# Use the output from last residual layer
h, skip_n = self.residual_blocks[n]((h, mel_spectrogram, diffusion_step_embed))
# Accumulate all skip outputs
skip += skip_n
# Normalize for training stability
return skip * math.sqrt(1.0 / self.num_res_layers)
class DiffWave(ModelMixin, ConfigMixin):
def __init__(
self,
in_channels=1,
res_channels=128,
skip_channels=128,
out_channels=1,
num_res_layers=30,
dilation_cycle=10,
diffusion_step_embed_dim_in=128,
diffusion_step_embed_dim_mid=512,
diffusion_step_embed_dim_out=512,
):
super().__init__()
# register all init arguments with self.register
self.register(
in_channels=in_channels,
res_channels=res_channels,
skip_channels=skip_channels,
out_channels=out_channels,
num_res_layers=num_res_layers,
dilation_cycle=dilation_cycle,
diffusion_step_embed_dim_in=diffusion_step_embed_dim_in,
diffusion_step_embed_dim_mid=diffusion_step_embed_dim_mid,
diffusion_step_embed_dim_out=diffusion_step_embed_dim_out,
)
# Initial conv1x1 with relu
self.init_conv = nn.Sequential(Conv(in_channels, res_channels, kernel_size=1), nn.ReLU(inplace=False))
# All residual layers
self.residual_layer = ResidualGroup(res_channels,
skip_channels,
num_res_layers,
dilation_cycle,
diffusion_step_embed_dim_in,
diffusion_step_embed_dim_mid,
diffusion_step_embed_dim_out)
# Final conv1x1 -> relu -> zeroconv1x1
self.final_conv = nn.Sequential(Conv(skip_channels, skip_channels, kernel_size=1),
nn.ReLU(inplace=False), ZeroConv1d(skip_channels, out_channels))
def forward(self, input_data):
audio, mel_spectrogram, diffusion_steps = input_data
x = audio
x = self.init_conv(x).clone()
x = self.residual_layer((x, mel_spectrogram, diffusion_steps))
return self.final_conv(x)
class BDDM(DiffusionPipeline):
def __init__(self, diffwave, noise_scheduler):
super().__init__()
noise_scheduler = noise_scheduler.set_format("pt")
self.register_modules(diffwave=diffwave, noise_scheduler=noise_scheduler)
@torch.no_grad()
def __call__(self, mel_spectrogram, generator, torch_device=None):
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
self.diffwave.to(torch_device)
mel_spectrogram = mel_spectrogram.to(torch_device)
audio_length = mel_spectrogram.size(-1) * 256
audio_size = (1, 1, audio_length)
# Sample gaussian noise to begin loop
audio = torch.normal(0, 1, size=audio_size, generator=generator).to(torch_device)
timestep_values = self.noise_scheduler.timestep_values
num_prediction_steps = len(self.noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
# 1. predict noise residual
ts = (torch.tensor(timestep_values[t]) * torch.ones((1, 1))).to(torch_device)
residual = self.diffwave((audio, mel_spectrogram, ts))
# 2. predict previous mean of audio x_t-1
pred_prev_audio = self.noise_scheduler.step(residual, audio, t)
# 3. optionally sample variance
variance = 0
if t > 0:
noise = torch.normal(0, 1, size=audio_size, generator=generator).to(torch_device)
variance = self.noise_scheduler.get_variance(t).sqrt() * noise
# 4. set current audio to prev_audio: x_t -> x_t-1
audio = pred_prev_audio + variance
return audio |