File size: 10,997 Bytes
bbd7574 ccdcc08 bbd7574 ccdcc08 bbd7574 ccdcc08 bbd7574 ccdcc08 bbd7574 ccdcc08 bbd7574 ccdcc08 bbd7574 ccdcc08 bbd7574 ccdcc08 bbd7574 0f49cfb bbd7574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import tqdm
from diffusers import (
ClassifierFreeGuidanceScheduler,
CLIPTextModel,
DiffusionPipeline,
GlideDDIMScheduler,
GLIDESuperResUNetModel,
GLIDETextToImageUNetModel,
)
from transformers import GPT2Tokenizer
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res + torch.zeros(broadcast_shape, device=timesteps.device)
class GLIDE(DiffusionPipeline):
def __init__(
self,
text_unet: GLIDETextToImageUNetModel,
text_noise_scheduler: ClassifierFreeGuidanceScheduler,
text_encoder: CLIPTextModel,
tokenizer: GPT2Tokenizer,
upscale_unet: GLIDESuperResUNetModel,
upscale_noise_scheduler: GlideDDIMScheduler,
):
super().__init__()
self.register_modules(
text_unet=text_unet,
text_noise_scheduler=text_noise_scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
upscale_unet=upscale_unet,
upscale_noise_scheduler=upscale_noise_scheduler,
)
def q_posterior_mean_variance(self, scheduler, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(scheduler.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(scheduler.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = _extract_into_tensor(scheduler.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(scheduler.posterior_log_variance_clipped, t, x_t.shape)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, model, scheduler, x, t, transformer_out=None, low_res=None, clip_denoised=True):
"""
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
the initial x, x_0.
:param model: the model, which takes a signal and a batch of timesteps
as input.
:param x: the [N x C x ...] tensor at time t.
:param t: a 1-D Tensor of timesteps.
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:return: a dict with the following keys:
- 'mean': the model mean output.
- 'variance': the model variance output.
- 'log_variance': the log of 'variance'.
- 'pred_xstart': the prediction for x_0.
"""
B, C = x.shape[:2]
assert t.shape == (B,)
if transformer_out is None:
# super-res model
model_output = model(x, t, low_res)
else:
# text2image model
model_output = model(x, t, transformer_out)
assert model_output.shape == (B, C * 2, *x.shape[2:])
model_output, model_var_values = torch.split(model_output, C, dim=1)
min_log = _extract_into_tensor(scheduler.posterior_log_variance_clipped, t, x.shape)
max_log = _extract_into_tensor(np.log(scheduler.betas), t, x.shape)
# The model_var_values is [-1, 1] for [min_var, max_var].
frac = (model_var_values + 1) / 2
model_log_variance = frac * max_log + (1 - frac) * min_log
model_variance = torch.exp(model_log_variance)
pred_xstart = self._predict_xstart_from_eps(scheduler, x_t=x, t=t, eps=model_output)
if clip_denoised:
pred_xstart = pred_xstart.clamp(-1, 1)
model_mean, _, _ = self.q_posterior_mean_variance(scheduler, x_start=pred_xstart, x_t=x, t=t)
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
return model_mean, model_variance, model_log_variance, pred_xstart
def _predict_xstart_from_eps(self, scheduler, x_t, t, eps):
assert x_t.shape == eps.shape
return (
_extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
)
def _predict_eps_from_xstart(self, scheduler, x_t, t, pred_xstart):
return (
_extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart
) / _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
@torch.no_grad()
def __call__(self, prompt, generator=None, torch_device=None):
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
self.text_unet.to(torch_device)
self.text_encoder.to(torch_device)
self.upscale_unet.to(torch_device)
# Create a classifier-free guidance sampling function
guidance_scale = 3.0
def text_model_fn(x_t, ts, transformer_out, **kwargs):
half = x_t[: len(x_t) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.text_unet(combined, ts, transformer_out, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
# 1. Sample gaussian noise
batch_size = 2 # second image is empty for classifier-free guidance
image = self.text_noise_scheduler.sample_noise(
(batch_size, self.text_unet.in_channels, 64, 64), device=torch_device, generator=generator
)
# 2. Encode tokens
# an empty input is needed to guide the model away from (
inputs = self.tokenizer([prompt, ""], padding="max_length", max_length=128, return_tensors="pt")
input_ids = inputs["input_ids"].to(torch_device)
attention_mask = inputs["attention_mask"].to(torch_device)
transformer_out = self.text_encoder(input_ids, attention_mask).last_hidden_state
# 3. Run the text2image generation step
num_timesteps = len(self.text_noise_scheduler)
for i in tqdm.tqdm(reversed(range(num_timesteps)), total=num_timesteps):
t = torch.tensor([i] * image.shape[0], device=torch_device)
mean, variance, log_variance, pred_xstart = self.p_mean_variance(
text_model_fn, self.text_noise_scheduler, image, t, transformer_out=transformer_out
)
noise = self.text_noise_scheduler.sample_noise(image.shape, device=torch_device, generator=generator)
nonzero_mask = (t != 0).float().view(-1, *([1] * (len(image.shape) - 1))) # no noise when t == 0
image = mean + nonzero_mask * torch.exp(0.5 * log_variance) * noise
# 4. Run the upscaling step
batch_size = 1
image = image[:1]
low_res = ((image + 1) * 127.5).round() / 127.5 - 1
eta = 0.0
# Tune this parameter to control the sharpness of 256x256 images.
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
upsample_temp = 0.997
image = (
self.upscale_noise_scheduler.sample_noise(
(batch_size, 3, 256, 256), device=torch_device, generator=generator
)
* upsample_temp
)
num_timesteps = len(self.upscale_noise_scheduler)
for t in tqdm.tqdm(
reversed(range(len(self.upscale_noise_scheduler))), total=len(self.upscale_noise_scheduler)
):
# i) define coefficients for time step t
clipped_image_coeff = 1 / torch.sqrt(self.upscale_noise_scheduler.get_alpha_prod(t))
clipped_noise_coeff = torch.sqrt(1 / self.upscale_noise_scheduler.get_alpha_prod(t) - 1)
image_coeff = (
(1 - self.upscale_noise_scheduler.get_alpha_prod(t - 1))
* torch.sqrt(self.upscale_noise_scheduler.get_alpha(t))
/ (1 - self.upscale_noise_scheduler.get_alpha_prod(t))
)
clipped_coeff = (
torch.sqrt(self.upscale_noise_scheduler.get_alpha_prod(t - 1))
* self.upscale_noise_scheduler.get_beta(t)
/ (1 - self.upscale_noise_scheduler.get_alpha_prod(t))
)
# ii) predict noise residual
time_input = torch.tensor([t] * image.shape[0], device=torch_device)
model_output = self.upscale_unet(image, time_input, low_res)
noise_residual, pred_variance = torch.split(model_output, 3, dim=1)
# iii) compute predicted image from residual
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
pred_mean = torch.clamp(pred_mean, -1, 1)
prev_image = clipped_coeff * pred_mean + image_coeff * image
# iv) sample variance
prev_variance = self.upscale_noise_scheduler.sample_variance(
t, prev_image.shape, device=torch_device, generator=generator
)
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
sampled_prev_image = prev_image + prev_variance
image = sampled_prev_image
image = image.permute(0, 2, 3, 1)
return image
|