anton-l HF staff commited on
Commit
b3c4d9c
·
1 Parent(s): 8dbdc4a

move the text encoder

Browse files
Files changed (2) hide show
  1. model_index.json +1 -1
  2. pipeline_glide.py +911 -0
model_index.json CHANGED
@@ -3,7 +3,7 @@
3
  "_diffusers_version": "0.0.3",
4
  "_module": "pipeline_glide",
5
  "text_encoder": [
6
- "modeling_clip_encoder",
7
  "CLIPTextModel"
8
  ],
9
  "text_noise_scheduler": [
 
3
  "_diffusers_version": "0.0.3",
4
  "_module": "pipeline_glide",
5
  "text_encoder": [
6
+ "pipeline_glide",
7
  "CLIPTextModel"
8
  ],
9
  "text_noise_scheduler": [
pipeline_glide.py ADDED
@@ -0,0 +1,911 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch CLIP model."""
16
+
17
+ import math
18
+ from dataclasses import dataclass
19
+ from typing import Any, Optional, Tuple, Union
20
+
21
+ import numpy as np
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ import tqdm
27
+ from transformers import CLIPConfig, CLIPModel, CLIPTextConfig, CLIPVisionConfig, GPT2Tokenizer
28
+ from transformers.activations import ACT2FN
29
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
30
+ from transformers.modeling_utils import PreTrainedModel
31
+ from transformers.utils import (
32
+ ModelOutput,
33
+ add_start_docstrings,
34
+ add_start_docstrings_to_model_forward,
35
+ logging,
36
+ replace_return_docstrings,
37
+ )
38
+
39
+ from ..models import GLIDESuperResUNetModel, GLIDETextToImageUNetModel
40
+ from ..pipeline_utils import DiffusionPipeline
41
+ from ..schedulers import ClassifierFreeGuidanceScheduler, DDIMScheduler
42
+
43
+
44
+ #####################
45
+ # START OF THE CLIP MODEL COPY-PASTE (with a modified attention module)
46
+ #####################
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+ _CHECKPOINT_FOR_DOC = "fusing/glide-base"
51
+
52
+ CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
53
+ "fusing/glide-base",
54
+ # See all CLIP models at https://huggingface.co/models?filter=clip
55
+ ]
56
+
57
+
58
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
59
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
60
+ """
61
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
62
+ """
63
+ bsz, src_len = mask.size()
64
+ tgt_len = tgt_len if tgt_len is not None else src_len
65
+
66
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
67
+
68
+ inverted_mask = 1.0 - expanded_mask
69
+
70
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
71
+
72
+
73
+ # contrastive loss function, adapted from
74
+ # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
75
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
76
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
77
+
78
+
79
+ def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
80
+ caption_loss = contrastive_loss(similarity)
81
+ image_loss = contrastive_loss(similarity.T)
82
+ return (caption_loss + image_loss) / 2.0
83
+
84
+
85
+ @dataclass
86
+ class CLIPOutput(ModelOutput):
87
+ """
88
+ Args:
89
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
90
+ Contrastive loss for image-text similarity.
91
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
92
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
93
+ similarity scores.
94
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
95
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
96
+ similarity scores.
97
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
98
+ The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
99
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
100
+ The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
101
+ text_model_output(`BaseModelOutputWithPooling`):
102
+ The output of the [`CLIPTextModel`].
103
+ vision_model_output(`BaseModelOutputWithPooling`):
104
+ The output of the [`CLIPVisionModel`].
105
+ """
106
+
107
+ loss: Optional[torch.FloatTensor] = None
108
+ logits_per_image: torch.FloatTensor = None
109
+ logits_per_text: torch.FloatTensor = None
110
+ text_embeds: torch.FloatTensor = None
111
+ image_embeds: torch.FloatTensor = None
112
+ text_model_output: BaseModelOutputWithPooling = None
113
+ vision_model_output: BaseModelOutputWithPooling = None
114
+
115
+ def to_tuple(self) -> Tuple[Any]:
116
+ return tuple(
117
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
118
+ for k in self.keys()
119
+ )
120
+
121
+
122
+ class CLIPVisionEmbeddings(nn.Module):
123
+ def __init__(self, config: CLIPVisionConfig):
124
+ super().__init__()
125
+ self.config = config
126
+ self.embed_dim = config.hidden_size
127
+ self.image_size = config.image_size
128
+ self.patch_size = config.patch_size
129
+
130
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
131
+
132
+ self.patch_embedding = nn.Conv2d(
133
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
134
+ )
135
+
136
+ self.num_patches = (self.image_size // self.patch_size) ** 2
137
+ self.num_positions = self.num_patches + 1
138
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
139
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
140
+
141
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
142
+ batch_size = pixel_values.shape[0]
143
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
144
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
145
+
146
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
147
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
148
+ embeddings = embeddings + self.position_embedding(self.position_ids)
149
+ return embeddings
150
+
151
+
152
+ class CLIPTextEmbeddings(nn.Module):
153
+ def __init__(self, config: CLIPTextConfig):
154
+ super().__init__()
155
+ embed_dim = config.hidden_size
156
+
157
+ self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
158
+ self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
159
+ self.use_padding_embeddings = config.use_padding_embeddings
160
+ if self.use_padding_embeddings:
161
+ self.padding_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
162
+
163
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
164
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
165
+
166
+ def forward(
167
+ self,
168
+ input_ids: Optional[torch.LongTensor] = None,
169
+ position_ids: Optional[torch.LongTensor] = None,
170
+ inputs_embeds: Optional[torch.FloatTensor] = None,
171
+ attention_mask: Optional[torch.Tensor] = None,
172
+ ) -> torch.Tensor:
173
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
174
+
175
+ if position_ids is None:
176
+ position_ids = self.position_ids[:, :seq_length]
177
+
178
+ if inputs_embeds is None:
179
+ inputs_embeds = self.token_embedding(input_ids)
180
+
181
+ position_embeddings = self.position_embedding(position_ids)
182
+ embeddings = inputs_embeds + position_embeddings
183
+
184
+ if self.use_padding_embeddings and attention_mask is not None:
185
+ padding_embeddings = self.padding_embedding(position_ids)
186
+ embeddings = torch.where(attention_mask.bool().unsqueeze(-1), embeddings, padding_embeddings)
187
+
188
+ return embeddings
189
+
190
+
191
+ class CLIPAttention(nn.Module):
192
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
193
+
194
+ def __init__(self, config):
195
+ super().__init__()
196
+ self.config = config
197
+ self.embed_dim = config.hidden_size
198
+ self.num_heads = config.num_attention_heads
199
+ self.head_dim = self.embed_dim // self.num_heads
200
+ if self.head_dim * self.num_heads != self.embed_dim:
201
+ raise ValueError(
202
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
203
+ f" {self.num_heads})."
204
+ )
205
+ self.scale = 1 / math.sqrt(math.sqrt(self.head_dim))
206
+
207
+ self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3)
208
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def forward(
211
+ self,
212
+ hidden_states: torch.Tensor,
213
+ attention_mask: Optional[torch.Tensor] = None,
214
+ causal_attention_mask: Optional[torch.Tensor] = None,
215
+ output_attentions: Optional[bool] = False,
216
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
217
+ """Input shape: Batch x Time x Channel"""
218
+
219
+ bsz, tgt_len, embed_dim = hidden_states.size()
220
+
221
+ qkv_states = self.qkv_proj(hidden_states)
222
+ qkv_states = qkv_states.view(bsz, tgt_len, self.num_heads, -1)
223
+ query_states, key_states, value_states = torch.split(qkv_states, self.head_dim, dim=-1)
224
+
225
+ attn_weights = torch.einsum("bthc,bshc->bhts", query_states * self.scale, key_states * self.scale)
226
+
227
+ wdtype = attn_weights.dtype
228
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1).type(wdtype)
229
+
230
+ attn_output = torch.einsum("bhts,bshc->bthc", attn_weights, value_states)
231
+ attn_output = attn_output.reshape(bsz, tgt_len, -1)
232
+
233
+ attn_output = self.out_proj(attn_output)
234
+
235
+ return attn_output, attn_weights
236
+
237
+
238
+ class CLIPMLP(nn.Module):
239
+ def __init__(self, config):
240
+ super().__init__()
241
+ self.config = config
242
+ self.activation_fn = ACT2FN[config.hidden_act]
243
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
244
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ hidden_states = self.fc1(hidden_states)
248
+ hidden_states = self.activation_fn(hidden_states)
249
+ hidden_states = self.fc2(hidden_states)
250
+ return hidden_states
251
+
252
+
253
+ class CLIPEncoderLayer(nn.Module):
254
+ def __init__(self, config: CLIPConfig):
255
+ super().__init__()
256
+ self.embed_dim = config.hidden_size
257
+ self.self_attn = CLIPAttention(config)
258
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim)
259
+ self.mlp = CLIPMLP(config)
260
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim)
261
+
262
+ def forward(
263
+ self,
264
+ hidden_states: torch.Tensor,
265
+ attention_mask: torch.Tensor,
266
+ causal_attention_mask: torch.Tensor,
267
+ output_attentions: Optional[bool] = False,
268
+ ) -> Tuple[torch.FloatTensor]:
269
+ """
270
+ Args:
271
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
272
+ attention_mask (`torch.FloatTensor`): attention mask of size
273
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
274
+ `(config.encoder_attention_heads,)`.
275
+ output_attentions (`bool`, *optional*):
276
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
277
+ returned tensors for more detail.
278
+ """
279
+ residual = hidden_states
280
+
281
+ hidden_states = self.layer_norm1(hidden_states)
282
+ hidden_states, attn_weights = self.self_attn(
283
+ hidden_states=hidden_states,
284
+ attention_mask=attention_mask,
285
+ causal_attention_mask=causal_attention_mask,
286
+ output_attentions=output_attentions,
287
+ )
288
+ hidden_states = residual + hidden_states
289
+
290
+ residual = hidden_states
291
+ hidden_states = self.layer_norm2(hidden_states)
292
+ hidden_states = self.mlp(hidden_states)
293
+ hidden_states = residual + hidden_states
294
+
295
+ outputs = (hidden_states,)
296
+
297
+ if output_attentions:
298
+ outputs += (attn_weights,)
299
+
300
+ return outputs
301
+
302
+
303
+ class CLIPPreTrainedModel(PreTrainedModel):
304
+ """
305
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
306
+ models.
307
+ """
308
+
309
+ config_class = CLIPConfig
310
+ base_model_prefix = "clip"
311
+ supports_gradient_checkpointing = True
312
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
313
+
314
+ def _init_weights(self, module):
315
+ """Initialize the weights"""
316
+ factor = self.config.initializer_factor
317
+ if isinstance(module, CLIPTextEmbeddings):
318
+ module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
319
+ module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
320
+ if hasattr(module, "padding_embedding"):
321
+ module.padding_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
322
+ elif isinstance(module, CLIPVisionEmbeddings):
323
+ factor = self.config.initializer_factor
324
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
325
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
326
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
327
+ elif isinstance(module, CLIPAttention):
328
+ factor = self.config.initializer_factor
329
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
330
+ out_proj_std = (module.embed_dim**-0.5) * factor
331
+ nn.init.normal_(module.qkv_proj.weight, std=in_proj_std)
332
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
333
+ elif isinstance(module, CLIPMLP):
334
+ factor = self.config.initializer_factor
335
+ in_proj_std = (
336
+ (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
337
+ )
338
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
339
+ nn.init.normal_(module.fc1.weight, std=fc_std)
340
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
341
+ elif isinstance(module, CLIPModel):
342
+ nn.init.normal_(
343
+ module.text_projection.weight,
344
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
345
+ )
346
+ nn.init.normal_(
347
+ module.visual_projection.weight,
348
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
349
+ )
350
+
351
+ if isinstance(module, nn.LayerNorm):
352
+ module.bias.data.zero_()
353
+ module.weight.data.fill_(1.0)
354
+ if isinstance(module, nn.Linear) and module.bias is not None:
355
+ module.bias.data.zero_()
356
+
357
+ def _set_gradient_checkpointing(self, module, value=False):
358
+ if isinstance(module, CLIPEncoder):
359
+ module.gradient_checkpointing = value
360
+
361
+
362
+ CLIP_START_DOCSTRING = r"""
363
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
364
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
365
+ behavior.
366
+
367
+ Parameters:
368
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
369
+ Initializing with a config file does not load the weights associated with the model, only the
370
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
371
+ """
372
+
373
+ CLIP_TEXT_INPUTS_DOCSTRING = r"""
374
+ Args:
375
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
376
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
377
+ it.
378
+
379
+ Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
380
+ [`PreTrainedTokenizer.__call__`] for details.
381
+
382
+ [What are input IDs?](../glossary#input-ids)
383
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
384
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
385
+
386
+ - 1 for tokens that are **not masked**,
387
+ - 0 for tokens that are **masked**.
388
+
389
+ [What are attention masks?](../glossary#attention-mask)
390
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
391
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
392
+ config.max_position_embeddings - 1]`.
393
+
394
+ [What are position IDs?](../glossary#position-ids)
395
+ output_attentions (`bool`, *optional*):
396
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
397
+ tensors for more detail.
398
+ output_hidden_states (`bool`, *optional*):
399
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
400
+ more detail.
401
+ return_dict (`bool`, *optional*):
402
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
403
+ """
404
+
405
+ CLIP_VISION_INPUTS_DOCSTRING = r"""
406
+ Args:
407
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
408
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
409
+ [`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
410
+ output_attentions (`bool`, *optional*):
411
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
412
+ tensors for more detail.
413
+ output_hidden_states (`bool`, *optional*):
414
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
415
+ more detail.
416
+ return_dict (`bool`, *optional*):
417
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
418
+ """
419
+
420
+ CLIP_INPUTS_DOCSTRING = r"""
421
+ Args:
422
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
423
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
424
+ it.
425
+
426
+ Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
427
+ [`PreTrainedTokenizer.__call__`] for details.
428
+
429
+ [What are input IDs?](../glossary#input-ids)
430
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
431
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
432
+
433
+ - 1 for tokens that are **not masked**,
434
+ - 0 for tokens that are **masked**.
435
+
436
+ [What are attention masks?](../glossary#attention-mask)
437
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
438
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
439
+ config.max_position_embeddings - 1]`.
440
+
441
+ [What are position IDs?](../glossary#position-ids)
442
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
443
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
444
+ [`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
445
+ return_loss (`bool`, *optional*):
446
+ Whether or not to return the contrastive loss.
447
+ output_attentions (`bool`, *optional*):
448
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
449
+ tensors for more detail.
450
+ output_hidden_states (`bool`, *optional*):
451
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
452
+ more detail.
453
+ return_dict (`bool`, *optional*):
454
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
455
+ """
456
+
457
+
458
+ class CLIPEncoder(nn.Module):
459
+ """
460
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
461
+ [`CLIPEncoderLayer`].
462
+
463
+ Args:
464
+ config: CLIPConfig
465
+ """
466
+
467
+ def __init__(self, config: CLIPConfig):
468
+ super().__init__()
469
+ self.config = config
470
+ self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
471
+ self.gradient_checkpointing = False
472
+
473
+ def forward(
474
+ self,
475
+ inputs_embeds,
476
+ attention_mask: Optional[torch.Tensor] = None,
477
+ causal_attention_mask: Optional[torch.Tensor] = None,
478
+ output_attentions: Optional[bool] = None,
479
+ output_hidden_states: Optional[bool] = None,
480
+ return_dict: Optional[bool] = None,
481
+ ) -> Union[Tuple, BaseModelOutput]:
482
+ r"""
483
+ Args:
484
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
485
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
486
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
487
+ than the model's internal embedding lookup matrix.
488
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
489
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
490
+
491
+ - 1 for tokens that are **not masked**,
492
+ - 0 for tokens that are **masked**.
493
+
494
+ [What are attention masks?](../glossary#attention-mask)
495
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
496
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
497
+
498
+ - 1 for tokens that are **not masked**,
499
+ - 0 for tokens that are **masked**.
500
+
501
+ [What are attention masks?](../glossary#attention-mask)
502
+ output_attentions (`bool`, *optional*):
503
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
504
+ returned tensors for more detail.
505
+ output_hidden_states (`bool`, *optional*):
506
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
507
+ for more detail.
508
+ return_dict (`bool`, *optional*):
509
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
510
+ """
511
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
512
+ output_hidden_states = (
513
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
514
+ )
515
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
516
+
517
+ encoder_states = () if output_hidden_states else None
518
+ all_attentions = () if output_attentions else None
519
+
520
+ hidden_states = inputs_embeds
521
+ for idx, encoder_layer in enumerate(self.layers):
522
+ if output_hidden_states:
523
+ encoder_states = encoder_states + (hidden_states,)
524
+ if self.gradient_checkpointing and self.training:
525
+
526
+ def create_custom_forward(module):
527
+ def custom_forward(*inputs):
528
+ return module(*inputs, output_attentions)
529
+
530
+ return custom_forward
531
+
532
+ layer_outputs = torch.utils.checkpoint.checkpoint(
533
+ create_custom_forward(encoder_layer),
534
+ hidden_states,
535
+ attention_mask,
536
+ causal_attention_mask,
537
+ )
538
+ else:
539
+ layer_outputs = encoder_layer(
540
+ hidden_states,
541
+ attention_mask,
542
+ causal_attention_mask,
543
+ output_attentions=output_attentions,
544
+ )
545
+
546
+ hidden_states = layer_outputs[0]
547
+
548
+ if output_attentions:
549
+ all_attentions = all_attentions + (layer_outputs[1],)
550
+
551
+ if output_hidden_states:
552
+ encoder_states = encoder_states + (hidden_states,)
553
+
554
+ if not return_dict:
555
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
556
+ return BaseModelOutput(
557
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
558
+ )
559
+
560
+
561
+ class CLIPTextTransformer(nn.Module):
562
+ def __init__(self, config: CLIPTextConfig):
563
+ super().__init__()
564
+ self.config = config
565
+ embed_dim = config.hidden_size
566
+ self.embeddings = CLIPTextEmbeddings(config)
567
+ self.encoder = CLIPEncoder(config)
568
+ self.final_layer_norm = nn.LayerNorm(embed_dim)
569
+
570
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
571
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
572
+ def forward(
573
+ self,
574
+ input_ids: Optional[torch.Tensor] = None,
575
+ attention_mask: Optional[torch.Tensor] = None,
576
+ position_ids: Optional[torch.Tensor] = None,
577
+ output_attentions: Optional[bool] = None,
578
+ output_hidden_states: Optional[bool] = None,
579
+ return_dict: Optional[bool] = None,
580
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
581
+ r"""
582
+ Returns:
583
+
584
+ """
585
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
586
+ output_hidden_states = (
587
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
588
+ )
589
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
590
+
591
+ if input_ids is None:
592
+ raise ValueError("You have to specify either input_ids")
593
+
594
+ input_shape = input_ids.size()
595
+ input_ids = input_ids.view(-1, input_shape[-1])
596
+
597
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask)
598
+
599
+ bsz, seq_len = input_shape
600
+ # CLIP's text model uses causal mask, prepare it here.
601
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
602
+ causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len).to(hidden_states.device)
603
+
604
+ # expand attention_mask
605
+ if attention_mask is not None:
606
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
607
+ attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
608
+
609
+ encoder_outputs = self.encoder(
610
+ inputs_embeds=hidden_states,
611
+ attention_mask=None,
612
+ causal_attention_mask=None,
613
+ output_attentions=output_attentions,
614
+ output_hidden_states=output_hidden_states,
615
+ return_dict=return_dict,
616
+ )
617
+
618
+ last_hidden_state = encoder_outputs[0]
619
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
620
+
621
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
622
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
623
+ pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
624
+
625
+ if not return_dict:
626
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
627
+
628
+ return BaseModelOutputWithPooling(
629
+ last_hidden_state=last_hidden_state,
630
+ pooler_output=pooled_output,
631
+ hidden_states=encoder_outputs.hidden_states,
632
+ attentions=encoder_outputs.attentions,
633
+ )
634
+
635
+ def _build_causal_attention_mask(self, bsz, seq_len):
636
+ # lazily create causal attention mask, with full attention between the vision tokens
637
+ # pytorch uses additive attention mask; fill with -inf
638
+ mask = torch.empty(bsz, seq_len, seq_len)
639
+ mask.fill_(torch.tensor(float("-inf")))
640
+ mask.triu_(1) # zero out the lower diagonal
641
+ mask = mask.unsqueeze(1) # expand mask
642
+ return mask
643
+
644
+
645
+ class CLIPTextModel(CLIPPreTrainedModel):
646
+ config_class = CLIPTextConfig
647
+
648
+ def __init__(self, config: CLIPTextConfig):
649
+ super().__init__(config)
650
+ self.text_model = CLIPTextTransformer(config)
651
+ # Initialize weights and apply final processing
652
+ self.post_init()
653
+
654
+ def get_input_embeddings(self) -> nn.Module:
655
+ return self.text_model.embeddings.token_embedding
656
+
657
+ def set_input_embeddings(self, value):
658
+ self.text_model.embeddings.token_embedding = value
659
+
660
+ @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
661
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
662
+ def forward(
663
+ self,
664
+ input_ids: Optional[torch.Tensor] = None,
665
+ attention_mask: Optional[torch.Tensor] = None,
666
+ position_ids: Optional[torch.Tensor] = None,
667
+ output_attentions: Optional[bool] = None,
668
+ output_hidden_states: Optional[bool] = None,
669
+ return_dict: Optional[bool] = None,
670
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
671
+ r"""
672
+ Returns:
673
+
674
+ Examples:
675
+
676
+ ```python
677
+ >>> from transformers import CLIPTokenizer, CLIPTextModel
678
+
679
+ >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
680
+ >>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
681
+
682
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
683
+
684
+ >>> outputs = model(**inputs)
685
+ >>> last_hidden_state = outputs.last_hidden_state
686
+ >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
687
+ ```"""
688
+ return self.text_model(
689
+ input_ids=input_ids,
690
+ attention_mask=attention_mask,
691
+ position_ids=position_ids,
692
+ output_attentions=output_attentions,
693
+ output_hidden_states=output_hidden_states,
694
+ return_dict=return_dict,
695
+ )
696
+
697
+
698
+ #####################
699
+ # END OF THE CLIP MODEL COPY-PASTE
700
+ #####################
701
+
702
+
703
+ def _extract_into_tensor(arr, timesteps, broadcast_shape):
704
+ """
705
+ Extract values from a 1-D numpy array for a batch of indices.
706
+
707
+ :param arr: the 1-D numpy array.
708
+ :param timesteps: a tensor of indices into the array to extract.
709
+ :param broadcast_shape: a larger shape of K dimensions with the batch
710
+ dimension equal to the length of timesteps.
711
+ :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
712
+ """
713
+ res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
714
+ while len(res.shape) < len(broadcast_shape):
715
+ res = res[..., None]
716
+ return res + torch.zeros(broadcast_shape, device=timesteps.device)
717
+
718
+
719
+ class GLIDE(DiffusionPipeline):
720
+ def __init__(
721
+ self,
722
+ text_unet: GLIDETextToImageUNetModel,
723
+ text_noise_scheduler: ClassifierFreeGuidanceScheduler,
724
+ text_encoder: CLIPTextModel,
725
+ tokenizer: GPT2Tokenizer,
726
+ upscale_unet: GLIDESuperResUNetModel,
727
+ upscale_noise_scheduler: DDIMScheduler,
728
+ ):
729
+ super().__init__()
730
+ self.register_modules(
731
+ text_unet=text_unet,
732
+ text_noise_scheduler=text_noise_scheduler,
733
+ text_encoder=text_encoder,
734
+ tokenizer=tokenizer,
735
+ upscale_unet=upscale_unet,
736
+ upscale_noise_scheduler=upscale_noise_scheduler,
737
+ )
738
+
739
+ def q_posterior_mean_variance(self, scheduler, x_start, x_t, t):
740
+ """
741
+ Compute the mean and variance of the diffusion posterior:
742
+
743
+ q(x_{t-1} | x_t, x_0)
744
+
745
+ """
746
+ assert x_start.shape == x_t.shape
747
+ posterior_mean = (
748
+ _extract_into_tensor(scheduler.posterior_mean_coef1, t, x_t.shape) * x_start
749
+ + _extract_into_tensor(scheduler.posterior_mean_coef2, t, x_t.shape) * x_t
750
+ )
751
+ posterior_variance = _extract_into_tensor(scheduler.posterior_variance, t, x_t.shape)
752
+ posterior_log_variance_clipped = _extract_into_tensor(scheduler.posterior_log_variance_clipped, t, x_t.shape)
753
+ assert (
754
+ posterior_mean.shape[0]
755
+ == posterior_variance.shape[0]
756
+ == posterior_log_variance_clipped.shape[0]
757
+ == x_start.shape[0]
758
+ )
759
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
760
+
761
+ def p_mean_variance(self, model, scheduler, x, t, transformer_out=None, low_res=None, clip_denoised=True):
762
+ """
763
+ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
764
+ the initial x, x_0.
765
+
766
+ :param model: the model, which takes a signal and a batch of timesteps
767
+ as input.
768
+ :param x: the [N x C x ...] tensor at time t.
769
+ :param t: a 1-D Tensor of timesteps.
770
+ :param clip_denoised: if True, clip the denoised signal into [-1, 1].
771
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
772
+ pass to the model. This can be used for conditioning.
773
+ :return: a dict with the following keys:
774
+ - 'mean': the model mean output.
775
+ - 'variance': the model variance output.
776
+ - 'log_variance': the log of 'variance'.
777
+ - 'pred_xstart': the prediction for x_0.
778
+ """
779
+
780
+ B, C = x.shape[:2]
781
+ assert t.shape == (B,)
782
+ if transformer_out is None:
783
+ # super-res model
784
+ model_output = model(x, t, low_res)
785
+ else:
786
+ # text2image model
787
+ model_output = model(x, t, transformer_out)
788
+
789
+ assert model_output.shape == (B, C * 2, *x.shape[2:])
790
+ model_output, model_var_values = torch.split(model_output, C, dim=1)
791
+ min_log = _extract_into_tensor(scheduler.posterior_log_variance_clipped, t, x.shape)
792
+ max_log = _extract_into_tensor(np.log(scheduler.betas), t, x.shape)
793
+ # The model_var_values is [-1, 1] for [min_var, max_var].
794
+ frac = (model_var_values + 1) / 2
795
+ model_log_variance = frac * max_log + (1 - frac) * min_log
796
+ model_variance = torch.exp(model_log_variance)
797
+
798
+ pred_xstart = self._predict_xstart_from_eps(scheduler, x_t=x, t=t, eps=model_output)
799
+ if clip_denoised:
800
+ pred_xstart = pred_xstart.clamp(-1, 1)
801
+ model_mean, _, _ = self.q_posterior_mean_variance(scheduler, x_start=pred_xstart, x_t=x, t=t)
802
+
803
+ assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
804
+ return model_mean, model_variance, model_log_variance, pred_xstart
805
+
806
+ def _predict_xstart_from_eps(self, scheduler, x_t, t, eps):
807
+ assert x_t.shape == eps.shape
808
+ return (
809
+ _extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
810
+ - _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
811
+ )
812
+
813
+ def _predict_eps_from_xstart(self, scheduler, x_t, t, pred_xstart):
814
+ return (
815
+ _extract_into_tensor(scheduler.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart
816
+ ) / _extract_into_tensor(scheduler.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
817
+
818
+ @torch.no_grad()
819
+ def __call__(self, prompt, generator=None, torch_device=None, num_inference_steps_upscale=50):
820
+ torch_device = "cuda" if torch.cuda.is_available() else "cpu"
821
+
822
+ self.text_unet.to(torch_device)
823
+ self.text_encoder.to(torch_device)
824
+ self.upscale_unet.to(torch_device)
825
+
826
+ # Create a classifier-free guidance sampling function
827
+ guidance_scale = 3.0
828
+
829
+ def text_model_fn(x_t, ts, transformer_out, **kwargs):
830
+ half = x_t[: len(x_t) // 2]
831
+ combined = torch.cat([half, half], dim=0)
832
+ model_out = self.text_unet(combined, ts, transformer_out, **kwargs)
833
+ eps, rest = model_out[:, :3], model_out[:, 3:]
834
+ cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
835
+ half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
836
+ eps = torch.cat([half_eps, half_eps], dim=0)
837
+ return torch.cat([eps, rest], dim=1)
838
+
839
+ # 1. Sample gaussian noise
840
+ batch_size = 2 # second image is empty for classifier-free guidance
841
+ image = self.text_noise_scheduler.sample_noise(
842
+ (batch_size, self.text_unet.in_channels, 64, 64), device=torch_device, generator=generator
843
+ )
844
+
845
+ # 2. Encode tokens
846
+ # an empty input is needed to guide the model away from (
847
+ inputs = self.tokenizer([prompt, ""], padding="max_length", max_length=128, return_tensors="pt")
848
+ input_ids = inputs["input_ids"].to(torch_device)
849
+ attention_mask = inputs["attention_mask"].to(torch_device)
850
+ transformer_out = self.text_encoder(input_ids, attention_mask).last_hidden_state
851
+
852
+ # 3. Run the text2image generation step
853
+ num_timesteps = len(self.text_noise_scheduler)
854
+ for i in tqdm.tqdm(reversed(range(num_timesteps)), total=num_timesteps):
855
+ t = torch.tensor([i] * image.shape[0], device=torch_device)
856
+ mean, variance, log_variance, pred_xstart = self.p_mean_variance(
857
+ text_model_fn, self.text_noise_scheduler, image, t, transformer_out=transformer_out
858
+ )
859
+ noise = self.text_noise_scheduler.sample_noise(image.shape, device=torch_device, generator=generator)
860
+ nonzero_mask = (t != 0).float().view(-1, *([1] * (len(image.shape) - 1))) # no noise when t == 0
861
+ image = mean + nonzero_mask * torch.exp(0.5 * log_variance) * noise
862
+
863
+ # 4. Run the upscaling step
864
+ batch_size = 1
865
+ image = image[:1]
866
+ low_res = ((image + 1) * 127.5).round() / 127.5 - 1
867
+ eta = 0.0
868
+
869
+ # Tune this parameter to control the sharpness of 256x256 images.
870
+ # A value of 1.0 is sharper, but sometimes results in grainy artifacts.
871
+ upsample_temp = 0.997
872
+
873
+ # Sample gaussian noise to begin loop
874
+ image = torch.randn(
875
+ (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
876
+ generator=generator,
877
+ )
878
+ image = image.to(torch_device)
879
+
880
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
881
+ # Ideally, read DDIM paper in-detail understanding
882
+
883
+ # Notation (<variable name> -> <name in paper>
884
+ # - pred_noise_t -> e_theta(x_t, t)
885
+ # - pred_original_image -> f_theta(x_t, t) or x_0
886
+ # - std_dev_t -> sigma_t
887
+ # - eta -> η
888
+ # - pred_image_direction -> "direction pointingc to x_t"
889
+ # - pred_prev_image -> "x_t-1"
890
+ for t in tqdm.tqdm(reversed(range(num_inference_steps_upscale)), total=num_inference_steps_upscale):
891
+ # 1. predict noise residual
892
+ with torch.no_grad():
893
+ time_input = torch.tensor([t] * image.shape[0], device=torch_device)
894
+ model_output = self.upscale_unet(image, time_input, low_res)
895
+ noise_residual, pred_variance = torch.split(model_output, 3, dim=1)
896
+
897
+ # 2. predict previous mean of image x_t-1
898
+ pred_prev_image = self.upscale_noise_scheduler.step(noise_residual, image, t, num_inference_steps_upscale, eta)
899
+
900
+ # 3. optionally sample variance
901
+ variance = 0
902
+ if eta > 0:
903
+ noise = torch.randn(image.shape, generator=generator).to(image.device)
904
+ variance = self.upscale_noise_scheduler.get_variance(t, num_inference_steps_upscale).sqrt() * eta * noise
905
+
906
+ # 4. set current image to prev_image: x_t -> x_t-1
907
+ image = pred_prev_image + variance
908
+
909
+ image = image.permute(0, 2, 3, 1)
910
+
911
+ return image