unified model
Browse files- modeling_glide.py +678 -4
modeling_glide.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
#
|
|
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -10,23 +11,696 @@
|
|
10 |
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
-
|
14 |
# limitations under the License.
|
|
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
import numpy as np
|
18 |
import torch
|
|
|
|
|
19 |
|
20 |
import tqdm
|
21 |
from diffusers import (
|
22 |
ClassifierFreeGuidanceScheduler,
|
23 |
-
CLIPTextModel,
|
24 |
DiffusionPipeline,
|
25 |
GlideDDIMScheduler,
|
26 |
GLIDESuperResUNetModel,
|
27 |
GLIDETextToImageUNetModel,
|
28 |
)
|
29 |
-
from transformers import GPT2Tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
11 |
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
|
|
14 |
# limitations under the License.
|
15 |
+
""" PyTorch CLIP model."""
|
16 |
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
|
21 |
import numpy as np
|
22 |
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
|
26 |
import tqdm
|
27 |
from diffusers import (
|
28 |
ClassifierFreeGuidanceScheduler,
|
|
|
29 |
DiffusionPipeline,
|
30 |
GlideDDIMScheduler,
|
31 |
GLIDESuperResUNetModel,
|
32 |
GLIDETextToImageUNetModel,
|
33 |
)
|
34 |
+
from transformers import CLIPConfig, CLIPModel, CLIPTextConfig, CLIPVisionConfig, GPT2Tokenizer
|
35 |
+
from transformers.activations import ACT2FN
|
36 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
37 |
+
from transformers.modeling_utils import PreTrainedModel
|
38 |
+
from transformers.utils import (
|
39 |
+
ModelOutput,
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
#####################
|
48 |
+
# START OF THE CLIP MODEL COPY-PASTE (with a modified attention module)
|
49 |
+
#####################
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "fusing/glide-base"
|
54 |
+
|
55 |
+
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
56 |
+
"fusing/glide-base",
|
57 |
+
# See all CLIP models at https://huggingface.co/models?filter=clip
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
62 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
63 |
+
"""
|
64 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
65 |
+
"""
|
66 |
+
bsz, src_len = mask.size()
|
67 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
68 |
+
|
69 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
70 |
+
|
71 |
+
inverted_mask = 1.0 - expanded_mask
|
72 |
+
|
73 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
74 |
+
|
75 |
+
|
76 |
+
# contrastive loss function, adapted from
|
77 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
78 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
79 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
80 |
+
|
81 |
+
|
82 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
83 |
+
caption_loss = contrastive_loss(similarity)
|
84 |
+
image_loss = contrastive_loss(similarity.T)
|
85 |
+
return (caption_loss + image_loss) / 2.0
|
86 |
+
|
87 |
+
|
88 |
+
@dataclass
|
89 |
+
class CLIPOutput(ModelOutput):
|
90 |
+
"""
|
91 |
+
Args:
|
92 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
93 |
+
Contrastive loss for image-text similarity.
|
94 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
95 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
96 |
+
similarity scores.
|
97 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
98 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
99 |
+
similarity scores.
|
100 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
101 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
|
102 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
103 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
104 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
105 |
+
The output of the [`CLIPTextModel`].
|
106 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
107 |
+
The output of the [`CLIPVisionModel`].
|
108 |
+
"""
|
109 |
+
|
110 |
+
loss: Optional[torch.FloatTensor] = None
|
111 |
+
logits_per_image: torch.FloatTensor = None
|
112 |
+
logits_per_text: torch.FloatTensor = None
|
113 |
+
text_embeds: torch.FloatTensor = None
|
114 |
+
image_embeds: torch.FloatTensor = None
|
115 |
+
text_model_output: BaseModelOutputWithPooling = None
|
116 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
117 |
+
|
118 |
+
def to_tuple(self) -> Tuple[Any]:
|
119 |
+
return tuple(
|
120 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
121 |
+
for k in self.keys()
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
class CLIPVisionEmbeddings(nn.Module):
|
126 |
+
def __init__(self, config: CLIPVisionConfig):
|
127 |
+
super().__init__()
|
128 |
+
self.config = config
|
129 |
+
self.embed_dim = config.hidden_size
|
130 |
+
self.image_size = config.image_size
|
131 |
+
self.patch_size = config.patch_size
|
132 |
+
|
133 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
134 |
+
|
135 |
+
self.patch_embedding = nn.Conv2d(
|
136 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
|
137 |
+
)
|
138 |
+
|
139 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
140 |
+
self.num_positions = self.num_patches + 1
|
141 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
142 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
143 |
+
|
144 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
145 |
+
batch_size = pixel_values.shape[0]
|
146 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
147 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
148 |
+
|
149 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
150 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
151 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
152 |
+
return embeddings
|
153 |
+
|
154 |
+
|
155 |
+
class CLIPTextEmbeddings(nn.Module):
|
156 |
+
def __init__(self, config: CLIPTextConfig):
|
157 |
+
super().__init__()
|
158 |
+
embed_dim = config.hidden_size
|
159 |
+
|
160 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
161 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
162 |
+
self.use_padding_embeddings = config.use_padding_embeddings
|
163 |
+
if self.use_padding_embeddings:
|
164 |
+
self.padding_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
165 |
+
|
166 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
167 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
168 |
+
|
169 |
+
def forward(
|
170 |
+
self,
|
171 |
+
input_ids: Optional[torch.LongTensor] = None,
|
172 |
+
position_ids: Optional[torch.LongTensor] = None,
|
173 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
174 |
+
attention_mask: Optional[torch.Tensor] = None,
|
175 |
+
) -> torch.Tensor:
|
176 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
177 |
+
|
178 |
+
if position_ids is None:
|
179 |
+
position_ids = self.position_ids[:, :seq_length]
|
180 |
+
|
181 |
+
if inputs_embeds is None:
|
182 |
+
inputs_embeds = self.token_embedding(input_ids)
|
183 |
+
|
184 |
+
position_embeddings = self.position_embedding(position_ids)
|
185 |
+
embeddings = inputs_embeds + position_embeddings
|
186 |
+
|
187 |
+
if self.use_padding_embeddings and attention_mask is not None:
|
188 |
+
padding_embeddings = self.padding_embedding(position_ids)
|
189 |
+
embeddings = torch.where(attention_mask.bool().unsqueeze(-1), embeddings, padding_embeddings)
|
190 |
+
|
191 |
+
return embeddings
|
192 |
+
|
193 |
+
|
194 |
+
class CLIPAttention(nn.Module):
|
195 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
196 |
+
|
197 |
+
def __init__(self, config):
|
198 |
+
super().__init__()
|
199 |
+
self.config = config
|
200 |
+
self.embed_dim = config.hidden_size
|
201 |
+
self.num_heads = config.num_attention_heads
|
202 |
+
self.head_dim = self.embed_dim // self.num_heads
|
203 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
204 |
+
raise ValueError(
|
205 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
206 |
+
f" {self.num_heads})."
|
207 |
+
)
|
208 |
+
self.scale = 1 / math.sqrt(math.sqrt(self.head_dim))
|
209 |
+
|
210 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3)
|
211 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
212 |
+
|
213 |
+
def forward(
|
214 |
+
self,
|
215 |
+
hidden_states: torch.Tensor,
|
216 |
+
attention_mask: Optional[torch.Tensor] = None,
|
217 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
218 |
+
output_attentions: Optional[bool] = False,
|
219 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
220 |
+
"""Input shape: Batch x Time x Channel"""
|
221 |
+
|
222 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
223 |
+
|
224 |
+
qkv_states = self.qkv_proj(hidden_states)
|
225 |
+
qkv_states = qkv_states.view(bsz, tgt_len, self.num_heads, -1)
|
226 |
+
query_states, key_states, value_states = torch.split(qkv_states, self.head_dim, dim=-1)
|
227 |
+
|
228 |
+
attn_weights = torch.einsum("bthc,bshc->bhts", query_states * self.scale, key_states * self.scale)
|
229 |
+
|
230 |
+
wdtype = attn_weights.dtype
|
231 |
+
attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1).type(wdtype)
|
232 |
+
|
233 |
+
attn_output = torch.einsum("bhts,bshc->bthc", attn_weights, value_states)
|
234 |
+
attn_output = attn_output.reshape(bsz, tgt_len, -1)
|
235 |
+
|
236 |
+
attn_output = self.out_proj(attn_output)
|
237 |
+
|
238 |
+
return attn_output, attn_weights
|
239 |
+
|
240 |
+
|
241 |
+
class CLIPMLP(nn.Module):
|
242 |
+
def __init__(self, config):
|
243 |
+
super().__init__()
|
244 |
+
self.config = config
|
245 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
246 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
247 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
248 |
+
|
249 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
250 |
+
hidden_states = self.fc1(hidden_states)
|
251 |
+
hidden_states = self.activation_fn(hidden_states)
|
252 |
+
hidden_states = self.fc2(hidden_states)
|
253 |
+
return hidden_states
|
254 |
+
|
255 |
+
|
256 |
+
class CLIPEncoderLayer(nn.Module):
|
257 |
+
def __init__(self, config: CLIPConfig):
|
258 |
+
super().__init__()
|
259 |
+
self.embed_dim = config.hidden_size
|
260 |
+
self.self_attn = CLIPAttention(config)
|
261 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
|
262 |
+
self.mlp = CLIPMLP(config)
|
263 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
|
264 |
+
|
265 |
+
def forward(
|
266 |
+
self,
|
267 |
+
hidden_states: torch.Tensor,
|
268 |
+
attention_mask: torch.Tensor,
|
269 |
+
causal_attention_mask: torch.Tensor,
|
270 |
+
output_attentions: Optional[bool] = False,
|
271 |
+
) -> Tuple[torch.FloatTensor]:
|
272 |
+
"""
|
273 |
+
Args:
|
274 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
275 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
276 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
277 |
+
`(config.encoder_attention_heads,)`.
|
278 |
+
output_attentions (`bool`, *optional*):
|
279 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
280 |
+
returned tensors for more detail.
|
281 |
+
"""
|
282 |
+
residual = hidden_states
|
283 |
+
|
284 |
+
hidden_states = self.layer_norm1(hidden_states)
|
285 |
+
hidden_states, attn_weights = self.self_attn(
|
286 |
+
hidden_states=hidden_states,
|
287 |
+
attention_mask=attention_mask,
|
288 |
+
causal_attention_mask=causal_attention_mask,
|
289 |
+
output_attentions=output_attentions,
|
290 |
+
)
|
291 |
+
hidden_states = residual + hidden_states
|
292 |
+
|
293 |
+
residual = hidden_states
|
294 |
+
hidden_states = self.layer_norm2(hidden_states)
|
295 |
+
hidden_states = self.mlp(hidden_states)
|
296 |
+
hidden_states = residual + hidden_states
|
297 |
+
|
298 |
+
outputs = (hidden_states,)
|
299 |
+
|
300 |
+
if output_attentions:
|
301 |
+
outputs += (attn_weights,)
|
302 |
+
|
303 |
+
return outputs
|
304 |
+
|
305 |
+
|
306 |
+
class CLIPPreTrainedModel(PreTrainedModel):
|
307 |
+
"""
|
308 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
309 |
+
models.
|
310 |
+
"""
|
311 |
+
|
312 |
+
config_class = CLIPConfig
|
313 |
+
base_model_prefix = "clip"
|
314 |
+
supports_gradient_checkpointing = True
|
315 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
316 |
+
|
317 |
+
def _init_weights(self, module):
|
318 |
+
"""Initialize the weights"""
|
319 |
+
factor = self.config.initializer_factor
|
320 |
+
if isinstance(module, CLIPTextEmbeddings):
|
321 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
322 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
323 |
+
if hasattr(module, "padding_embedding"):
|
324 |
+
module.padding_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
325 |
+
elif isinstance(module, CLIPVisionEmbeddings):
|
326 |
+
factor = self.config.initializer_factor
|
327 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
328 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
329 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
330 |
+
elif isinstance(module, CLIPAttention):
|
331 |
+
factor = self.config.initializer_factor
|
332 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
333 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
334 |
+
nn.init.normal_(module.qkv_proj.weight, std=in_proj_std)
|
335 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
336 |
+
elif isinstance(module, CLIPMLP):
|
337 |
+
factor = self.config.initializer_factor
|
338 |
+
in_proj_std = (
|
339 |
+
(module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
340 |
+
)
|
341 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
342 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
343 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
344 |
+
elif isinstance(module, CLIPModel):
|
345 |
+
nn.init.normal_(
|
346 |
+
module.text_projection.weight,
|
347 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
348 |
+
)
|
349 |
+
nn.init.normal_(
|
350 |
+
module.visual_projection.weight,
|
351 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
352 |
+
)
|
353 |
+
|
354 |
+
if isinstance(module, nn.LayerNorm):
|
355 |
+
module.bias.data.zero_()
|
356 |
+
module.weight.data.fill_(1.0)
|
357 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
358 |
+
module.bias.data.zero_()
|
359 |
+
|
360 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
361 |
+
if isinstance(module, CLIPEncoder):
|
362 |
+
module.gradient_checkpointing = value
|
363 |
+
|
364 |
+
|
365 |
+
CLIP_START_DOCSTRING = r"""
|
366 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
367 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
368 |
+
behavior.
|
369 |
+
|
370 |
+
Parameters:
|
371 |
+
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
372 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
373 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
374 |
+
"""
|
375 |
+
|
376 |
+
CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
377 |
+
Args:
|
378 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
379 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
380 |
+
it.
|
381 |
+
|
382 |
+
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
383 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
384 |
+
|
385 |
+
[What are input IDs?](../glossary#input-ids)
|
386 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
387 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
388 |
+
|
389 |
+
- 1 for tokens that are **not masked**,
|
390 |
+
- 0 for tokens that are **masked**.
|
391 |
+
|
392 |
+
[What are attention masks?](../glossary#attention-mask)
|
393 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
394 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
395 |
+
config.max_position_embeddings - 1]`.
|
396 |
+
|
397 |
+
[What are position IDs?](../glossary#position-ids)
|
398 |
+
output_attentions (`bool`, *optional*):
|
399 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
400 |
+
tensors for more detail.
|
401 |
+
output_hidden_states (`bool`, *optional*):
|
402 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
403 |
+
more detail.
|
404 |
+
return_dict (`bool`, *optional*):
|
405 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
406 |
+
"""
|
407 |
+
|
408 |
+
CLIP_VISION_INPUTS_DOCSTRING = r"""
|
409 |
+
Args:
|
410 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
411 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
412 |
+
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
|
413 |
+
output_attentions (`bool`, *optional*):
|
414 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
415 |
+
tensors for more detail.
|
416 |
+
output_hidden_states (`bool`, *optional*):
|
417 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
418 |
+
more detail.
|
419 |
+
return_dict (`bool`, *optional*):
|
420 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
421 |
+
"""
|
422 |
+
|
423 |
+
CLIP_INPUTS_DOCSTRING = r"""
|
424 |
+
Args:
|
425 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
426 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
427 |
+
it.
|
428 |
+
|
429 |
+
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
430 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
431 |
+
|
432 |
+
[What are input IDs?](../glossary#input-ids)
|
433 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
434 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
435 |
+
|
436 |
+
- 1 for tokens that are **not masked**,
|
437 |
+
- 0 for tokens that are **masked**.
|
438 |
+
|
439 |
+
[What are attention masks?](../glossary#attention-mask)
|
440 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
441 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
442 |
+
config.max_position_embeddings - 1]`.
|
443 |
+
|
444 |
+
[What are position IDs?](../glossary#position-ids)
|
445 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
446 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
447 |
+
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
|
448 |
+
return_loss (`bool`, *optional*):
|
449 |
+
Whether or not to return the contrastive loss.
|
450 |
+
output_attentions (`bool`, *optional*):
|
451 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
452 |
+
tensors for more detail.
|
453 |
+
output_hidden_states (`bool`, *optional*):
|
454 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
455 |
+
more detail.
|
456 |
+
return_dict (`bool`, *optional*):
|
457 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
458 |
+
"""
|
459 |
+
|
460 |
+
|
461 |
+
class CLIPEncoder(nn.Module):
|
462 |
+
"""
|
463 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
464 |
+
[`CLIPEncoderLayer`].
|
465 |
+
|
466 |
+
Args:
|
467 |
+
config: CLIPConfig
|
468 |
+
"""
|
469 |
+
|
470 |
+
def __init__(self, config: CLIPConfig):
|
471 |
+
super().__init__()
|
472 |
+
self.config = config
|
473 |
+
self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
474 |
+
self.gradient_checkpointing = False
|
475 |
+
|
476 |
+
def forward(
|
477 |
+
self,
|
478 |
+
inputs_embeds,
|
479 |
+
attention_mask: Optional[torch.Tensor] = None,
|
480 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
481 |
+
output_attentions: Optional[bool] = None,
|
482 |
+
output_hidden_states: Optional[bool] = None,
|
483 |
+
return_dict: Optional[bool] = None,
|
484 |
+
) -> Union[Tuple, BaseModelOutput]:
|
485 |
+
r"""
|
486 |
+
Args:
|
487 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
488 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
489 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
490 |
+
than the model's internal embedding lookup matrix.
|
491 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
492 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
493 |
+
|
494 |
+
- 1 for tokens that are **not masked**,
|
495 |
+
- 0 for tokens that are **masked**.
|
496 |
+
|
497 |
+
[What are attention masks?](../glossary#attention-mask)
|
498 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
499 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
500 |
+
|
501 |
+
- 1 for tokens that are **not masked**,
|
502 |
+
- 0 for tokens that are **masked**.
|
503 |
+
|
504 |
+
[What are attention masks?](../glossary#attention-mask)
|
505 |
+
output_attentions (`bool`, *optional*):
|
506 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
507 |
+
returned tensors for more detail.
|
508 |
+
output_hidden_states (`bool`, *optional*):
|
509 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
510 |
+
for more detail.
|
511 |
+
return_dict (`bool`, *optional*):
|
512 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
513 |
+
"""
|
514 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
515 |
+
output_hidden_states = (
|
516 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
517 |
+
)
|
518 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
519 |
+
|
520 |
+
encoder_states = () if output_hidden_states else None
|
521 |
+
all_attentions = () if output_attentions else None
|
522 |
+
|
523 |
+
hidden_states = inputs_embeds
|
524 |
+
for idx, encoder_layer in enumerate(self.layers):
|
525 |
+
if output_hidden_states:
|
526 |
+
encoder_states = encoder_states + (hidden_states,)
|
527 |
+
if self.gradient_checkpointing and self.training:
|
528 |
+
|
529 |
+
def create_custom_forward(module):
|
530 |
+
def custom_forward(*inputs):
|
531 |
+
return module(*inputs, output_attentions)
|
532 |
+
|
533 |
+
return custom_forward
|
534 |
+
|
535 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
536 |
+
create_custom_forward(encoder_layer),
|
537 |
+
hidden_states,
|
538 |
+
attention_mask,
|
539 |
+
causal_attention_mask,
|
540 |
+
)
|
541 |
+
else:
|
542 |
+
layer_outputs = encoder_layer(
|
543 |
+
hidden_states,
|
544 |
+
attention_mask,
|
545 |
+
causal_attention_mask,
|
546 |
+
output_attentions=output_attentions,
|
547 |
+
)
|
548 |
+
|
549 |
+
hidden_states = layer_outputs[0]
|
550 |
+
|
551 |
+
if output_attentions:
|
552 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
553 |
+
|
554 |
+
if output_hidden_states:
|
555 |
+
encoder_states = encoder_states + (hidden_states,)
|
556 |
+
|
557 |
+
if not return_dict:
|
558 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
559 |
+
return BaseModelOutput(
|
560 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
class CLIPTextTransformer(nn.Module):
|
565 |
+
def __init__(self, config: CLIPTextConfig):
|
566 |
+
super().__init__()
|
567 |
+
self.config = config
|
568 |
+
embed_dim = config.hidden_size
|
569 |
+
self.embeddings = CLIPTextEmbeddings(config)
|
570 |
+
self.encoder = CLIPEncoder(config)
|
571 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim)
|
572 |
+
|
573 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
574 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
575 |
+
def forward(
|
576 |
+
self,
|
577 |
+
input_ids: Optional[torch.Tensor] = None,
|
578 |
+
attention_mask: Optional[torch.Tensor] = None,
|
579 |
+
position_ids: Optional[torch.Tensor] = None,
|
580 |
+
output_attentions: Optional[bool] = None,
|
581 |
+
output_hidden_states: Optional[bool] = None,
|
582 |
+
return_dict: Optional[bool] = None,
|
583 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
584 |
+
r"""
|
585 |
+
Returns:
|
586 |
+
|
587 |
+
"""
|
588 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
589 |
+
output_hidden_states = (
|
590 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
591 |
+
)
|
592 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
593 |
+
|
594 |
+
if input_ids is None:
|
595 |
+
raise ValueError("You have to specify either input_ids")
|
596 |
+
|
597 |
+
input_shape = input_ids.size()
|
598 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
599 |
+
|
600 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask)
|
601 |
+
|
602 |
+
bsz, seq_len = input_shape
|
603 |
+
# CLIP's text model uses causal mask, prepare it here.
|
604 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
605 |
+
causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len).to(hidden_states.device)
|
606 |
+
|
607 |
+
# expand attention_mask
|
608 |
+
if attention_mask is not None:
|
609 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
610 |
+
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
611 |
+
|
612 |
+
encoder_outputs = self.encoder(
|
613 |
+
inputs_embeds=hidden_states,
|
614 |
+
attention_mask=None,
|
615 |
+
causal_attention_mask=None,
|
616 |
+
output_attentions=output_attentions,
|
617 |
+
output_hidden_states=output_hidden_states,
|
618 |
+
return_dict=return_dict,
|
619 |
+
)
|
620 |
+
|
621 |
+
last_hidden_state = encoder_outputs[0]
|
622 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
623 |
+
|
624 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
625 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
626 |
+
pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
|
627 |
+
|
628 |
+
if not return_dict:
|
629 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
630 |
+
|
631 |
+
return BaseModelOutputWithPooling(
|
632 |
+
last_hidden_state=last_hidden_state,
|
633 |
+
pooler_output=pooled_output,
|
634 |
+
hidden_states=encoder_outputs.hidden_states,
|
635 |
+
attentions=encoder_outputs.attentions,
|
636 |
+
)
|
637 |
+
|
638 |
+
def _build_causal_attention_mask(self, bsz, seq_len):
|
639 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
640 |
+
# pytorch uses additive attention mask; fill with -inf
|
641 |
+
mask = torch.empty(bsz, seq_len, seq_len)
|
642 |
+
mask.fill_(torch.tensor(float("-inf")))
|
643 |
+
mask.triu_(1) # zero out the lower diagonal
|
644 |
+
mask = mask.unsqueeze(1) # expand mask
|
645 |
+
return mask
|
646 |
+
|
647 |
+
|
648 |
+
class CLIPTextModel(CLIPPreTrainedModel):
|
649 |
+
config_class = CLIPTextConfig
|
650 |
+
|
651 |
+
def __init__(self, config: CLIPTextConfig):
|
652 |
+
super().__init__(config)
|
653 |
+
self.text_model = CLIPTextTransformer(config)
|
654 |
+
# Initialize weights and apply final processing
|
655 |
+
self.post_init()
|
656 |
+
|
657 |
+
def get_input_embeddings(self) -> nn.Module:
|
658 |
+
return self.text_model.embeddings.token_embedding
|
659 |
+
|
660 |
+
def set_input_embeddings(self, value):
|
661 |
+
self.text_model.embeddings.token_embedding = value
|
662 |
+
|
663 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
664 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
665 |
+
def forward(
|
666 |
+
self,
|
667 |
+
input_ids: Optional[torch.Tensor] = None,
|
668 |
+
attention_mask: Optional[torch.Tensor] = None,
|
669 |
+
position_ids: Optional[torch.Tensor] = None,
|
670 |
+
output_attentions: Optional[bool] = None,
|
671 |
+
output_hidden_states: Optional[bool] = None,
|
672 |
+
return_dict: Optional[bool] = None,
|
673 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
674 |
+
r"""
|
675 |
+
Returns:
|
676 |
+
|
677 |
+
Examples:
|
678 |
+
|
679 |
+
```python
|
680 |
+
>>> from transformers import CLIPTokenizer, CLIPTextModel
|
681 |
+
|
682 |
+
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
683 |
+
>>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
684 |
+
|
685 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
686 |
+
|
687 |
+
>>> outputs = model(**inputs)
|
688 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
689 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
690 |
+
```"""
|
691 |
+
return self.text_model(
|
692 |
+
input_ids=input_ids,
|
693 |
+
attention_mask=attention_mask,
|
694 |
+
position_ids=position_ids,
|
695 |
+
output_attentions=output_attentions,
|
696 |
+
output_hidden_states=output_hidden_states,
|
697 |
+
return_dict=return_dict,
|
698 |
+
)
|
699 |
+
|
700 |
+
|
701 |
+
#####################
|
702 |
+
# END OF THE CLIP MODEL COPY-PASTE
|
703 |
+
#####################
|
704 |
|
705 |
|
706 |
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|