futranbg mjwong commited on
Commit
b0df846
·
0 Parent(s):

Duplicate from mjwong/multilingual-e5-large-xnli

Browse files

Co-authored-by: Ming Jie Wong <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - ar
6
+ - bg
7
+ - de
8
+ - el
9
+ - es
10
+ - fr
11
+ - hi
12
+ - ru
13
+ - sw
14
+ - th
15
+ - tr
16
+ - ur
17
+ - vi
18
+ - zh
19
+ license: mit
20
+ datasets:
21
+ - xnli
22
+ pipeline_tag: zero-shot-classification
23
+ widget:
24
+ - text: Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU
25
+ candidate_labels: politics, economy, entertainment, environment
26
+ base_model: intfloat/multilingual-e5-large
27
+ model-index:
28
+ - name: multilingual-e5-large-xnli
29
+ results: []
30
+ ---
31
+
32
+ # multilingual-e5-large-xnli
33
+
34
+ This model is a fine-tuned version of [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the XNLI dataset.
35
+
36
+ ## Model description
37
+
38
+ [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
39
+ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
40
+
41
+ ## How to use the model
42
+
43
+ ### With the zero-shot classification pipeline
44
+
45
+ The model can be loaded with the `zero-shot-classification` pipeline like so:
46
+
47
+ ```python
48
+ from transformers import pipeline
49
+ classifier = pipeline("zero-shot-classification",
50
+ model="mjwong/multilingual-e5-large-xnli")
51
+ ```
52
+
53
+ You can then use this pipeline to classify sequences into any of the class names you specify.
54
+
55
+ ```python
56
+ sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
57
+ candidate_labels = ["politics", "economy", "entertainment", "environment"]
58
+ classifier(sequence_to_classify, candidate_labels)
59
+ ```
60
+
61
+ If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
62
+
63
+ ```python
64
+ candidate_labels = ["politics", "economy", "entertainment", "environment"]
65
+ classifier(sequence_to_classify, candidate_labels, multi_label=True)
66
+ ```
67
+
68
+ ### With manual PyTorch
69
+
70
+ The model can also be applied on NLI tasks like so:
71
+
72
+ ```python
73
+ import torch
74
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
75
+
76
+ # device = "cuda:0" or "cpu"
77
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
78
+
79
+ model_name = "mjwong/multilingual-e5-large-xnli"
80
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
81
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
82
+
83
+ premise = "But I thought you'd sworn off coffee."
84
+ hypothesis = "I thought that you vowed to drink more coffee."
85
+
86
+ input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
87
+ output = model(input["input_ids"].to(device))
88
+ prediction = torch.softmax(output["logits"][0], -1).tolist()
89
+ label_names = ["entailment", "neutral", "contradiction"]
90
+ prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
91
+ print(prediction)
92
+ ```
93
+
94
+ ### Eval results
95
+ The model was evaluated using the XNLI test sets on 15 languages: English (en), Arabic (ar), Bulgarian (bg), German (de), Greek (el), Spanish (es), French (fr), Hindi (hi), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnam (vi) and Chinese (zh). The metric used is accuracy.
96
+
97
+ |Datasets|en|ar|bg|de|el|es|fr|hi|ru|sw|th|tr|ur|vi|zh|
98
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
99
+ |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.849|0.768|0.803|0.800|0.792|0.809|0.805|0.738|0.782|0.728|0.756|0.766|0.713|0.787|0.785|
100
+ |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.811|0.711|0.751|0.759|0.746|0.778|0.765|0.685|0.728|0.662|0.705|0.716|0.683|0.736|0.740|
101
+ |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.867|0.791|0.832|0.825|0.823|0.837|0.824|0.778|0.806|0.749|0.787|0.793|0.738|0.813|0.808|
102
+ |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.865|0.765|0.811|0.811|0.795|0.823|0.816|0.743|0.785|0.713|0.765|0.774|0.706|0.788|0.787|
103
+
104
+ The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
105
+
106
+ |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3|
107
+ | :---: | :---: | :---: | :---: | :---: | :---: |
108
+ |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.835|0.837|0.287|0.276|0.301|
109
+ |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.814|0.811|0.588|0.437|0.439|
110
+ |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.865|0.865|0.312|0.316|0.300|
111
+ |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.863|0.863|0.623|0.456|0.455|
112
+
113
+ ### Training hyperparameters
114
+
115
+ The following hyperparameters were used during training:
116
+
117
+ - learning_rate: 2e-05
118
+ - train_batch_size: 16
119
+ - eval_batch_size: 16
120
+ - seed: 42
121
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
122
+ - lr_scheduler_type: linear
123
+ - lr_scheduler_warmup_ratio: 0.1
124
+ - num_epochs: 1
125
+
126
+ ### Framework versions
127
+ - Transformers 4.28.1
128
+ - Pytorch 1.12.1+cu116
129
+ - Datasets 2.11.0
130
+ - Tokenizers 0.12.1
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mjwong/multilingual-e5-large-xnli",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "entailment",
15
+ "1": "neutral",
16
+ "2": "contradiction"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 4096,
20
+ "label2id": {
21
+ "contradiction": 2,
22
+ "entailment": 0,
23
+ "neutral": 1
24
+ },
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 514,
27
+ "model_type": "xlm-roberta",
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 24,
30
+ "output_past": true,
31
+ "pad_token_id": 1,
32
+ "position_embedding_type": "absolute",
33
+ "problem_type": "single_label_classification",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.28.1",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 250002
39
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bd79736369b5b54176ba2886b15e1151e64b96245add03bdaaea6731b391a22
3
+ size 2239626972
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21472a4ccf8f94cb26e02602d184d8effc1fd784f2e4d2e7bc658f9b61e98d49
3
+ size 2239711213
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2c509a525eb51aebb33fb59c24ee923c1d4c1db23c3ae81fe05ccf354084f7b
3
+ size 17082758
tokenizer_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "<s>",
5
+ "eos_token": "</s>",
6
+ "mask_token": {
7
+ "__type": "AddedToken",
8
+ "content": "<mask>",
9
+ "lstrip": true,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "model_max_length": 512,
15
+ "pad_token": "<pad>",
16
+ "sep_token": "</s>",
17
+ "tokenizer_class": "XLMRobertaTokenizer",
18
+ "unk_token": "<unk>"
19
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d356b925ea075039011818775c79788eb9327de24fb17efa70e468f9b736f3f
3
+ size 3567