Felix Marty commited on
Commit
309fcfc
·
1 Parent(s): 77501cd

remove unused

Browse files
modeling/__pycache__/modeling_resnet.cpython-39.pyc DELETED
Binary file (16.1 kB)
 
modeling/modeling_resnet.py DELETED
@@ -1,518 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ PyTorch ResNet model."""
16
-
17
- from typing import Optional
18
-
19
- import torch
20
- import torch.utils.checkpoint
21
- from torch import Tensor, nn
22
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
23
-
24
- from transformers.activations import ACT2FN
25
- from transformers.modeling_outputs import (
26
- BackboneOutput,
27
- BaseModelOutputWithNoAttention,
28
- BaseModelOutputWithPoolingAndNoAttention,
29
- ImageClassifierOutputWithNoAttention,
30
- )
31
- from transformers.modeling_utils import BackboneMixin, PreTrainedModel
32
- from transformers.utils import (
33
- add_code_sample_docstrings,
34
- add_start_docstrings,
35
- add_start_docstrings_to_model_forward,
36
- logging,
37
- replace_return_docstrings,
38
- )
39
- from transformers import ResNetConfig
40
-
41
-
42
- logger = logging.get_logger(__name__)
43
-
44
- # General docstring
45
- _CONFIG_FOR_DOC = "ResNetConfig"
46
- _FEAT_EXTRACTOR_FOR_DOC = "AutoImageProcessor"
47
-
48
- # Base docstring
49
- _CHECKPOINT_FOR_DOC = "microsoft/resnet-50"
50
- _EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
51
-
52
- # Image classification docstring
53
- _IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50"
54
- _IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
55
-
56
- RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
57
- "microsoft/resnet-50",
58
- # See all resnet models at https://huggingface.co/models?filter=resnet
59
- ]
60
-
61
-
62
- class ResNetConvLayer(nn.Module):
63
- def __init__(
64
- self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu"
65
- ):
66
- super().__init__()
67
- self.convolution = nn.Conv2d(
68
- in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False
69
- )
70
- self.normalization = nn.BatchNorm2d(out_channels)
71
- self.activation = ACT2FN[activation] if activation is not None else nn.Identity()
72
-
73
- def forward(self, input: Tensor) -> Tensor:
74
- hidden_state = self.convolution(input)
75
- hidden_state = self.normalization(hidden_state)
76
- hidden_state = self.activation(hidden_state)
77
- return hidden_state
78
-
79
-
80
- class ResNetEmbeddings(nn.Module):
81
- """
82
- ResNet Embeddings (stem) composed of a single aggressive convolution.
83
- """
84
-
85
- def __init__(self, config: ResNetConfig):
86
- super().__init__()
87
- self.embedder = ResNetConvLayer(
88
- config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act
89
- )
90
- self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
91
- self.num_channels = config.num_channels
92
-
93
- def forward(self, pixel_values: Tensor) -> Tensor:
94
- num_channels = pixel_values.shape[1]
95
- if num_channels != self.num_channels:
96
- raise ValueError(
97
- "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
98
- )
99
- embedding = self.embedder(pixel_values)
100
- embedding = self.pooler(embedding)
101
- return embedding
102
-
103
-
104
- class ResNetShortCut(nn.Module):
105
- """
106
- ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
107
- downsample the input using `stride=2`.
108
- """
109
-
110
- def __init__(self, in_channels: int, out_channels: int, stride: int = 2):
111
- super().__init__()
112
- self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
113
- self.normalization = nn.BatchNorm2d(out_channels)
114
-
115
- def forward(self, input: Tensor) -> Tensor:
116
- hidden_state = self.convolution(input)
117
- hidden_state = self.normalization(hidden_state)
118
- return hidden_state
119
-
120
-
121
- class ResNetBasicLayer(nn.Module):
122
- """
123
- A classic ResNet's residual layer composed by two `3x3` convolutions.
124
- """
125
-
126
- def __init__(self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu"):
127
- super().__init__()
128
- should_apply_shortcut = in_channels != out_channels or stride != 1
129
- self.shortcut = (
130
- ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
131
- )
132
- self.layer = nn.Sequential(
133
- ResNetConvLayer(in_channels, out_channels, stride=stride),
134
- ResNetConvLayer(out_channels, out_channels, activation=None),
135
- )
136
- self.activation = ACT2FN[activation]
137
-
138
- def forward(self, hidden_state):
139
- residual = hidden_state
140
- hidden_state = self.layer(hidden_state)
141
- residual = self.shortcut(residual)
142
- hidden_state += residual
143
- hidden_state = self.activation(hidden_state)
144
- return hidden_state
145
-
146
-
147
- class ResNetBottleNeckLayer(nn.Module):
148
- """
149
- A classic ResNet's bottleneck layer composed by three `3x3` convolutions.
150
-
151
- The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3`
152
- convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`.
153
- """
154
-
155
- def __init__(
156
- self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu", reduction: int = 4
157
- ):
158
- super().__init__()
159
- should_apply_shortcut = in_channels != out_channels or stride != 1
160
- reduces_channels = out_channels // reduction
161
- self.shortcut = (
162
- ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
163
- )
164
- self.layer = nn.Sequential(
165
- ResNetConvLayer(in_channels, reduces_channels, kernel_size=1),
166
- ResNetConvLayer(reduces_channels, reduces_channels, stride=stride),
167
- ResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None),
168
- )
169
- self.activation = ACT2FN[activation]
170
-
171
- def forward(self, hidden_state):
172
- residual = hidden_state
173
- hidden_state = self.layer(hidden_state)
174
- residual = self.shortcut(residual)
175
- hidden_state += residual
176
- hidden_state = self.activation(hidden_state)
177
- return hidden_state
178
-
179
-
180
- class ResNetStage(nn.Module):
181
- """
182
- A ResNet stage composed by stacked layers.
183
- """
184
-
185
- def __init__(
186
- self,
187
- config: ResNetConfig,
188
- in_channels: int,
189
- out_channels: int,
190
- stride: int = 2,
191
- depth: int = 2,
192
- ):
193
- super().__init__()
194
-
195
- layer = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer
196
-
197
- self.layers = nn.Sequential(
198
- # downsampling is done in the first layer with stride of 2
199
- layer(in_channels, out_channels, stride=stride, activation=config.hidden_act),
200
- *[layer(out_channels, out_channels, activation=config.hidden_act) for _ in range(depth - 1)],
201
- )
202
-
203
- def forward(self, input: Tensor) -> Tensor:
204
- hidden_state = input
205
- for layer in self.layers:
206
- hidden_state = layer(hidden_state)
207
- hidden_state = hidden_state + 1
208
- print("having fun in my custom code")
209
- return hidden_state
210
-
211
-
212
- class ResNetEncoder(nn.Module):
213
- def __init__(self, config: ResNetConfig):
214
- super().__init__()
215
- self.stages = nn.ModuleList([])
216
- # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
217
- self.stages.append(
218
- ResNetStage(
219
- config,
220
- config.embedding_size,
221
- config.hidden_sizes[0],
222
- stride=2 if config.downsample_in_first_stage else 1,
223
- depth=config.depths[0],
224
- )
225
- )
226
- in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
227
- for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]):
228
- self.stages.append(ResNetStage(config, in_channels, out_channels, depth=depth))
229
-
230
- def forward(
231
- self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
232
- ) -> BaseModelOutputWithNoAttention:
233
- hidden_states = () if output_hidden_states else None
234
-
235
- for stage_module in self.stages:
236
- if output_hidden_states:
237
- hidden_states = hidden_states + (hidden_state,)
238
-
239
- hidden_state = stage_module(hidden_state)
240
-
241
- if output_hidden_states:
242
- hidden_states = hidden_states + (hidden_state,)
243
-
244
- if not return_dict:
245
- return tuple(v for v in [hidden_state, hidden_states] if v is not None)
246
-
247
- return BaseModelOutputWithNoAttention(
248
- last_hidden_state=hidden_state,
249
- hidden_states=hidden_states,
250
- )
251
-
252
-
253
- class ResNetPreTrainedModel(PreTrainedModel):
254
- """
255
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
256
- models.
257
- """
258
-
259
- config_class = ResNetConfig
260
- base_model_prefix = "resnet"
261
- main_input_name = "pixel_values"
262
- supports_gradient_checkpointing = True
263
-
264
- def _init_weights(self, module):
265
- if isinstance(module, nn.Conv2d):
266
- nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
267
- elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
268
- nn.init.constant_(module.weight, 1)
269
- nn.init.constant_(module.bias, 0)
270
-
271
- def _set_gradient_checkpointing(self, module, value=False):
272
- if isinstance(module, ResNetEncoder):
273
- module.gradient_checkpointing = value
274
-
275
-
276
- RESNET_START_DOCSTRING = r"""
277
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
278
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
279
- behavior.
280
-
281
- Parameters:
282
- config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
283
- Initializing with a config file does not load the weights associated with the model, only the
284
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
285
- """
286
-
287
- RESNET_INPUTS_DOCSTRING = r"""
288
- Args:
289
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
290
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
291
- [`AutoImageProcessor.__call__`] for details.
292
-
293
- output_hidden_states (`bool`, *optional*):
294
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
295
- more detail.
296
- return_dict (`bool`, *optional*):
297
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
298
- """
299
-
300
-
301
- @add_start_docstrings(
302
- "The bare ResNet model outputting raw features without any specific head on top.",
303
- RESNET_START_DOCSTRING,
304
- )
305
- class ResNetModel(ResNetPreTrainedModel):
306
- def __init__(self, config):
307
- super().__init__(config)
308
- self.config = config
309
- self.embedder = ResNetEmbeddings(config)
310
- self.encoder = ResNetEncoder(config)
311
- self.pooler = nn.AdaptiveAvgPool2d((1, 1))
312
- # Initialize weights and apply final processing
313
- self.post_init()
314
-
315
- @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
316
- @add_code_sample_docstrings(
317
- processor_class=_FEAT_EXTRACTOR_FOR_DOC,
318
- checkpoint=_CHECKPOINT_FOR_DOC,
319
- output_type=BaseModelOutputWithPoolingAndNoAttention,
320
- config_class=_CONFIG_FOR_DOC,
321
- modality="vision",
322
- expected_output=_EXPECTED_OUTPUT_SHAPE,
323
- )
324
- def forward(
325
- self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
326
- ) -> BaseModelOutputWithPoolingAndNoAttention:
327
- output_hidden_states = (
328
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
329
- )
330
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
331
-
332
- embedding_output = self.embedder(pixel_values)
333
-
334
- encoder_outputs = self.encoder(
335
- embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
336
- )
337
-
338
- last_hidden_state = encoder_outputs[0]
339
-
340
- pooled_output = self.pooler(last_hidden_state)
341
-
342
- if not return_dict:
343
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
344
-
345
- return BaseModelOutputWithPoolingAndNoAttention(
346
- last_hidden_state=last_hidden_state,
347
- pooler_output=pooled_output,
348
- hidden_states=encoder_outputs.hidden_states,
349
- )
350
-
351
-
352
- @add_start_docstrings(
353
- """
354
- ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
355
- ImageNet.
356
- """,
357
- RESNET_START_DOCSTRING,
358
- )
359
- class ResNetCustomForImageClassification(ResNetPreTrainedModel):
360
- def __init__(self, config):
361
- super().__init__(config)
362
- self.num_labels = config.num_labels
363
- self.resnet = ResNetModel(config)
364
- # classification head
365
- self.classifier = nn.Sequential(
366
- nn.Flatten(),
367
- nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
368
- )
369
- # initialize weights and apply final processing
370
- self.post_init()
371
-
372
- @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
373
- @add_code_sample_docstrings(
374
- processor_class=_FEAT_EXTRACTOR_FOR_DOC,
375
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
376
- output_type=ImageClassifierOutputWithNoAttention,
377
- config_class=_CONFIG_FOR_DOC,
378
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
379
- )
380
- def forward(
381
- self,
382
- pixel_values: Optional[torch.FloatTensor] = None,
383
- labels: Optional[torch.LongTensor] = None,
384
- output_hidden_states: Optional[bool] = None,
385
- return_dict: Optional[bool] = None,
386
- ) -> ImageClassifierOutputWithNoAttention:
387
- r"""
388
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
389
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
390
- config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
391
- """
392
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
393
-
394
- outputs = self.resnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
395
-
396
- pooled_output = outputs.pooler_output if return_dict else outputs[1]
397
-
398
- logits = self.classifier(pooled_output)
399
-
400
- loss = None
401
-
402
- if labels is not None:
403
- if self.config.problem_type is None:
404
- if self.num_labels == 1:
405
- self.config.problem_type = "regression"
406
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
407
- self.config.problem_type = "single_label_classification"
408
- else:
409
- self.config.problem_type = "multi_label_classification"
410
- if self.config.problem_type == "regression":
411
- loss_fct = MSELoss()
412
- if self.num_labels == 1:
413
- loss = loss_fct(logits.squeeze(), labels.squeeze())
414
- else:
415
- loss = loss_fct(logits, labels)
416
- elif self.config.problem_type == "single_label_classification":
417
- loss_fct = CrossEntropyLoss()
418
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
419
- elif self.config.problem_type == "multi_label_classification":
420
- loss_fct = BCEWithLogitsLoss()
421
- loss = loss_fct(logits, labels)
422
-
423
- if not return_dict:
424
- output = (logits,) + outputs[2:]
425
- return (loss,) + output if loss is not None else output
426
-
427
- return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
428
-
429
-
430
- @add_start_docstrings(
431
- """
432
- ResNet backbone, to be used with frameworks like DETR and MaskFormer.
433
- """,
434
- RESNET_START_DOCSTRING,
435
- )
436
- class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin):
437
- def __init__(self, config):
438
- super().__init__(config)
439
-
440
- self.stage_names = config.stage_names
441
- self.embedder = ResNetEmbeddings(config)
442
- self.encoder = ResNetEncoder(config)
443
-
444
- self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]]
445
-
446
- out_feature_channels = {}
447
- out_feature_channels["stem"] = config.embedding_size
448
- for idx, stage in enumerate(self.stage_names[1:]):
449
- out_feature_channels[stage] = config.hidden_sizes[idx]
450
-
451
- self.out_feature_channels = out_feature_channels
452
-
453
- # initialize weights and apply final processing
454
- self.post_init()
455
-
456
- @property
457
- def channels(self):
458
- return [self.out_feature_channels[name] for name in self.out_features]
459
-
460
- @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
461
- @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
462
- def forward(
463
- self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
464
- ) -> BackboneOutput:
465
- """
466
- Returns:
467
-
468
- Examples:
469
-
470
- ```python
471
- >>> from transformers import AutoImageProcessor, AutoBackbone
472
- >>> import torch
473
- >>> from PIL import Image
474
- >>> import requests
475
-
476
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
477
- >>> image = Image.open(requests.get(url, stream=True).raw)
478
-
479
- >>> processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
480
- >>> model = AutoBackbone.from_pretrained(
481
- ... "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"]
482
- ... )
483
-
484
- >>> inputs = processor(image, return_tensors="pt")
485
-
486
- >>> outputs = model(**inputs)
487
- >>> feature_maps = outputs.feature_maps
488
- >>> list(feature_maps[-1].shape)
489
- [1, 2048, 7, 7]
490
- ```"""
491
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
492
- output_hidden_states = (
493
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
494
- )
495
-
496
- embedding_output = self.embedder(pixel_values)
497
-
498
- outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True)
499
-
500
- hidden_states = outputs.hidden_states
501
-
502
- feature_maps = ()
503
- for idx, stage in enumerate(self.stage_names):
504
- if stage in self.out_features:
505
- feature_maps += (hidden_states[idx],)
506
-
507
- if not return_dict:
508
- output = (feature_maps,)
509
- if output_hidden_states:
510
- output += (outputs.hidden_states,)
511
- return output
512
-
513
- return BackboneOutput(
514
- feature_maps=feature_maps,
515
- hidden_states=outputs.hidden_states if output_hidden_states else None,
516
- attentions=None,
517
- )
518
-