File size: 15,861 Bytes
54341bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e867576
 
 
 
 
 
54341bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e867576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54341bf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-fold-3
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-fold-3

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4622
- Accuracy: 0.8962
- Precision: 0.9090
- Recall: 0.8962
- F1: 0.8963
- Binary: 0.9276

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.22  | 50   | 3.8684          | 0.0648   | 0.0195    | 0.0648 | 0.0184 | 0.3348 |

| No log        | 0.43  | 100  | 3.4085          | 0.0891   | 0.0169    | 0.0891 | 0.0238 | 0.3588 |

| No log        | 0.65  | 150  | 3.1493          | 0.1107   | 0.0376    | 0.1107 | 0.0422 | 0.3746 |

| No log        | 0.86  | 200  | 2.8408          | 0.1822   | 0.1026    | 0.1822 | 0.1043 | 0.4273 |

| 3.6116        | 1.08  | 250  | 2.6147          | 0.2780   | 0.1840    | 0.2780 | 0.1853 | 0.4906 |

| 3.6116        | 1.29  | 300  | 2.4272          | 0.2982   | 0.2217    | 0.2982 | 0.2156 | 0.5023 |

| 3.6116        | 1.51  | 350  | 2.1582          | 0.4103   | 0.3356    | 0.4103 | 0.3247 | 0.5852 |

| 3.6116        | 1.72  | 400  | 2.0102          | 0.4143   | 0.3454    | 0.4143 | 0.3447 | 0.5892 |

| 3.6116        | 1.94  | 450  | 1.8796          | 0.4615   | 0.4433    | 0.4615 | 0.4066 | 0.6225 |

| 2.6485        | 2.16  | 500  | 1.6625          | 0.5412   | 0.5251    | 0.5412 | 0.4856 | 0.6771 |

| 2.6485        | 2.37  | 550  | 1.5422          | 0.5843   | 0.5780    | 0.5843 | 0.5307 | 0.7078 |

| 2.6485        | 2.59  | 600  | 1.4263          | 0.6073   | 0.5806    | 0.6073 | 0.5573 | 0.7246 |

| 2.6485        | 2.8   | 650  | 1.2985          | 0.6451   | 0.6244    | 0.6451 | 0.6039 | 0.7503 |

| 2.1146        | 3.02  | 700  | 1.2788          | 0.6613   | 0.6564    | 0.6613 | 0.6273 | 0.7614 |

| 2.1146        | 3.23  | 750  | 1.2186          | 0.6802   | 0.6820    | 0.6802 | 0.6499 | 0.7742 |

| 2.1146        | 3.45  | 800  | 1.1269          | 0.7152   | 0.7428    | 0.7152 | 0.6978 | 0.7991 |

| 2.1146        | 3.66  | 850  | 1.1179          | 0.6680   | 0.6970    | 0.6680 | 0.6377 | 0.7675 |

| 2.1146        | 3.88  | 900  | 1.0928          | 0.7031   | 0.7264    | 0.7031 | 0.6793 | 0.7889 |

| 1.8074        | 4.09  | 950  | 0.9427          | 0.7638   | 0.7780    | 0.7638 | 0.7513 | 0.8350 |

| 1.8074        | 4.31  | 1000 | 0.8876          | 0.7692   | 0.7952    | 0.7692 | 0.7603 | 0.8382 |

| 1.8074        | 4.53  | 1050 | 0.8686          | 0.7773   | 0.7852    | 0.7773 | 0.7664 | 0.8425 |

| 1.8074        | 4.74  | 1100 | 0.8814          | 0.7665   | 0.7770    | 0.7665 | 0.7497 | 0.8363 |

| 1.8074        | 4.96  | 1150 | 0.8280          | 0.7706   | 0.7896    | 0.7706 | 0.7603 | 0.8401 |

| 1.5857        | 5.17  | 1200 | 0.8050          | 0.7773   | 0.8023    | 0.7773 | 0.7720 | 0.8439 |

| 1.5857        | 5.39  | 1250 | 0.7475          | 0.8016   | 0.8114    | 0.8016 | 0.7976 | 0.8609 |

| 1.5857        | 5.6   | 1300 | 0.7396          | 0.7895   | 0.8187    | 0.7895 | 0.7859 | 0.8521 |

| 1.5857        | 5.82  | 1350 | 0.7637          | 0.8030   | 0.8177    | 0.8030 | 0.7953 | 0.8598 |

| 1.4411        | 6.03  | 1400 | 0.7511          | 0.7976   | 0.8157    | 0.7976 | 0.7934 | 0.8574 |

| 1.4411        | 6.25  | 1450 | 0.6479          | 0.8232   | 0.8392    | 0.8232 | 0.8185 | 0.8756 |

| 1.4411        | 6.47  | 1500 | 0.6521          | 0.8286   | 0.8494    | 0.8286 | 0.8233 | 0.8803 |

| 1.4411        | 6.68  | 1550 | 0.5778          | 0.8529   | 0.8637    | 0.8529 | 0.8501 | 0.8962 |

| 1.4411        | 6.9   | 1600 | 0.5898          | 0.8259   | 0.8428    | 0.8259 | 0.8249 | 0.8776 |

| 1.3162        | 7.11  | 1650 | 0.5784          | 0.8421   | 0.8614    | 0.8421 | 0.8404 | 0.8892 |

| 1.3162        | 7.33  | 1700 | 0.6395          | 0.8232   | 0.8407    | 0.8232 | 0.8170 | 0.8764 |

| 1.3162        | 7.54  | 1750 | 0.6334          | 0.8340   | 0.8519    | 0.8340 | 0.8320 | 0.8834 |

| 1.3162        | 7.76  | 1800 | 0.6133          | 0.8286   | 0.8513    | 0.8286 | 0.8274 | 0.8798 |

| 1.3162        | 7.97  | 1850 | 0.5488          | 0.8502   | 0.8663    | 0.8502 | 0.8496 | 0.8949 |

| 1.2312        | 8.19  | 1900 | 0.6521          | 0.8246   | 0.8411    | 0.8246 | 0.8227 | 0.8769 |

| 1.2312        | 8.41  | 1950 | 0.5706          | 0.8529   | 0.8669    | 0.8529 | 0.8528 | 0.8962 |

| 1.2312        | 8.62  | 2000 | 0.5822          | 0.8462   | 0.8596    | 0.8462 | 0.8448 | 0.8924 |

| 1.2312        | 8.84  | 2050 | 0.5332          | 0.8502   | 0.8646    | 0.8502 | 0.8498 | 0.8953 |

| 1.1409        | 9.05  | 2100 | 0.5226          | 0.8650   | 0.8743    | 0.8650 | 0.8631 | 0.9053 |

| 1.1409        | 9.27  | 2150 | 0.5451          | 0.8623   | 0.8750    | 0.8623 | 0.8617 | 0.9032 |

| 1.1409        | 9.48  | 2200 | 0.5940          | 0.8381   | 0.8510    | 0.8381 | 0.8365 | 0.8860 |

| 1.1409        | 9.7   | 2250 | 0.5303          | 0.8570   | 0.8686    | 0.8570 | 0.8568 | 0.8988 |

| 1.1409        | 9.91  | 2300 | 0.5706          | 0.8448   | 0.8622    | 0.8448 | 0.8429 | 0.8912 |

| 1.0865        | 10.13 | 2350 | 0.5140          | 0.8623   | 0.8780    | 0.8623 | 0.8635 | 0.9026 |

| 1.0865        | 10.34 | 2400 | 0.5106          | 0.8704   | 0.8811    | 0.8704 | 0.8692 | 0.9092 |

| 1.0865        | 10.56 | 2450 | 0.5478          | 0.8583   | 0.8753    | 0.8583 | 0.8570 | 0.9005 |

| 1.0865        | 10.78 | 2500 | 0.6036          | 0.8583   | 0.8694    | 0.8583 | 0.8548 | 0.9003 |

| 1.0865        | 10.99 | 2550 | 0.5360          | 0.8543   | 0.8712    | 0.8543 | 0.8498 | 0.8984 |

| 1.0383        | 11.21 | 2600 | 0.5426          | 0.8570   | 0.8691    | 0.8570 | 0.8558 | 0.8982 |

| 1.0383        | 11.42 | 2650 | 0.5124          | 0.8691   | 0.8777    | 0.8691 | 0.8673 | 0.9067 |

| 1.0383        | 11.64 | 2700 | 0.5676          | 0.8435   | 0.8554    | 0.8435 | 0.8422 | 0.8892 |

| 1.0383        | 11.85 | 2750 | 0.5387          | 0.8596   | 0.8700    | 0.8596 | 0.8590 | 0.9022 |

| 0.9938        | 12.07 | 2800 | 0.5402          | 0.8691   | 0.8778    | 0.8691 | 0.8675 | 0.9089 |

| 0.9938        | 12.28 | 2850 | 0.5814          | 0.8529   | 0.8603    | 0.8529 | 0.8496 | 0.8969 |

| 0.9938        | 12.5  | 2900 | 0.5124          | 0.8623   | 0.8705    | 0.8623 | 0.8594 | 0.9034 |

| 0.9938        | 12.72 | 2950 | 0.5077          | 0.8623   | 0.8739    | 0.8623 | 0.8604 | 0.9032 |

| 0.9938        | 12.93 | 3000 | 0.5305          | 0.8704   | 0.8785    | 0.8704 | 0.8675 | 0.9101 |

| 0.9526        | 13.15 | 3050 | 0.5455          | 0.8718   | 0.8849    | 0.8718 | 0.8707 | 0.9100 |

| 0.9526        | 13.36 | 3100 | 0.5153          | 0.8826   | 0.8939    | 0.8826 | 0.8822 | 0.9175 |

| 0.9526        | 13.58 | 3150 | 0.5218          | 0.8826   | 0.8902    | 0.8826 | 0.8813 | 0.9167 |

| 0.9526        | 13.79 | 3200 | 0.5361          | 0.8637   | 0.8756    | 0.8637 | 0.8634 | 0.9030 |

| 0.91          | 14.01 | 3250 | 0.5174          | 0.8785   | 0.8873    | 0.8785 | 0.8780 | 0.9139 |

| 0.91          | 14.22 | 3300 | 0.5346          | 0.8799   | 0.8892    | 0.8799 | 0.8787 | 0.9158 |

| 0.91          | 14.44 | 3350 | 0.5586          | 0.8650   | 0.8747    | 0.8650 | 0.8634 | 0.9050 |

| 0.91          | 14.66 | 3400 | 0.5504          | 0.8704   | 0.8816    | 0.8704 | 0.8698 | 0.9097 |

| 0.91          | 14.87 | 3450 | 0.5643          | 0.8718   | 0.8814    | 0.8718 | 0.8700 | 0.9101 |

| 0.8689        | 15.09 | 3500 | 0.5425          | 0.8650   | 0.8766    | 0.8650 | 0.8642 | 0.9043 |

| 0.8689        | 15.3  | 3550 | 0.5609          | 0.8623   | 0.8775    | 0.8623 | 0.8616 | 0.9038 |

| 0.8689        | 15.52 | 3600 | 0.5440          | 0.8745   | 0.8847    | 0.8745 | 0.8739 | 0.9116 |

| 0.8689        | 15.73 | 3650 | 0.5020          | 0.8718   | 0.8814    | 0.8718 | 0.8714 | 0.9103 |

| 0.8689        | 15.95 | 3700 | 0.5650          | 0.8718   | 0.8810    | 0.8718 | 0.8704 | 0.9099 |

| 0.8437        | 16.16 | 3750 | 0.5115          | 0.8785   | 0.8874    | 0.8785 | 0.8774 | 0.9146 |

| 0.8437        | 16.38 | 3800 | 0.5651          | 0.8596   | 0.8735    | 0.8596 | 0.8592 | 0.9022 |

| 0.8437        | 16.59 | 3850 | 0.4996          | 0.8920   | 0.9025    | 0.8920 | 0.8921 | 0.9242 |

| 0.8437        | 16.81 | 3900 | 0.5528          | 0.8772   | 0.8887    | 0.8772 | 0.8765 | 0.9134 |

| 0.8213        | 17.03 | 3950 | 0.5568          | 0.8677   | 0.8816    | 0.8677 | 0.8666 | 0.9074 |

| 0.8213        | 17.24 | 4000 | 0.5270          | 0.8812   | 0.8906    | 0.8812 | 0.8804 | 0.9167 |

| 0.8213        | 17.46 | 4050 | 0.5239          | 0.8812   | 0.8922    | 0.8812 | 0.8800 | 0.9162 |

| 0.8213        | 17.67 | 4100 | 0.4915          | 0.8839   | 0.8921    | 0.8839 | 0.8834 | 0.9181 |

| 0.8213        | 17.89 | 4150 | 0.5282          | 0.8812   | 0.8914    | 0.8812 | 0.8807 | 0.9152 |

| 0.7835        | 18.1  | 4200 | 0.5031          | 0.8866   | 0.8959    | 0.8866 | 0.8865 | 0.9194 |

| 0.7835        | 18.32 | 4250 | 0.4997          | 0.8812   | 0.8898    | 0.8812 | 0.8803 | 0.9158 |

| 0.7835        | 18.53 | 4300 | 0.5080          | 0.8826   | 0.8904    | 0.8826 | 0.8809 | 0.9167 |

| 0.7835        | 18.75 | 4350 | 0.5264          | 0.8812   | 0.8898    | 0.8812 | 0.8800 | 0.9158 |

| 0.7835        | 18.97 | 4400 | 0.5487          | 0.8718   | 0.8808    | 0.8718 | 0.8707 | 0.9105 |

| 0.7606        | 19.18 | 4450 | 0.5266          | 0.8772   | 0.8877    | 0.8772 | 0.8759 | 0.9139 |

| 0.7606        | 19.4  | 4500 | 0.5257          | 0.8772   | 0.8875    | 0.8772 | 0.8770 | 0.9139 |

| 0.7606        | 19.61 | 4550 | 0.5321          | 0.8880   | 0.8977    | 0.8880 | 0.8882 | 0.9215 |

| 0.7606        | 19.83 | 4600 | 0.5349          | 0.8772   | 0.8880    | 0.8772 | 0.8765 | 0.9139 |

| 0.7342        | 20.04 | 4650 | 0.5250          | 0.8880   | 0.8962    | 0.8880 | 0.8877 | 0.9219 |

| 0.7342        | 20.26 | 4700 | 0.5081          | 0.8907   | 0.8990    | 0.8907 | 0.8904 | 0.9232 |

| 0.7342        | 20.47 | 4750 | 0.4958          | 0.8839   | 0.8941    | 0.8839 | 0.8842 | 0.9171 |

| 0.7342        | 20.69 | 4800 | 0.5293          | 0.8826   | 0.8928    | 0.8826 | 0.8819 | 0.9181 |

| 0.7342        | 20.91 | 4850 | 0.5094          | 0.8812   | 0.8924    | 0.8812 | 0.8805 | 0.9167 |

| 0.7129        | 21.12 | 4900 | 0.4922          | 0.8920   | 0.8997    | 0.8920 | 0.8908 | 0.9242 |

| 0.7129        | 21.34 | 4950 | 0.5078          | 0.8907   | 0.9000    | 0.8907 | 0.8901 | 0.9238 |

| 0.7129        | 21.55 | 5000 | 0.5303          | 0.8799   | 0.8892    | 0.8799 | 0.8781 | 0.9167 |

| 0.7129        | 21.77 | 5050 | 0.5531          | 0.8731   | 0.8842    | 0.8731 | 0.8711 | 0.9115 |

| 0.7129        | 21.98 | 5100 | 0.5572          | 0.8799   | 0.8920    | 0.8799 | 0.8784 | 0.9158 |

| 0.7032        | 22.2  | 5150 | 0.5151          | 0.8799   | 0.8903    | 0.8799 | 0.8793 | 0.9167 |

| 0.7032        | 22.41 | 5200 | 0.5090          | 0.8812   | 0.8921    | 0.8812 | 0.8808 | 0.9177 |

| 0.7032        | 22.63 | 5250 | 0.5318          | 0.8799   | 0.8891    | 0.8799 | 0.8785 | 0.9158 |

| 0.7032        | 22.84 | 5300 | 0.5114          | 0.8826   | 0.8897    | 0.8826 | 0.8812 | 0.9171 |

| 0.6809        | 23.06 | 5350 | 0.5049          | 0.8866   | 0.8946    | 0.8866 | 0.8858 | 0.9209 |

| 0.6809        | 23.28 | 5400 | 0.5378          | 0.8799   | 0.8901    | 0.8799 | 0.8786 | 0.9152 |

| 0.6809        | 23.49 | 5450 | 0.5088          | 0.8812   | 0.8905    | 0.8812 | 0.8806 | 0.9158 |

| 0.6809        | 23.71 | 5500 | 0.4883          | 0.8920   | 0.9033    | 0.8920 | 0.8925 | 0.9252 |

| 0.6809        | 23.92 | 5550 | 0.5168          | 0.8799   | 0.8911    | 0.8799 | 0.8800 | 0.9152 |

| 0.6604        | 24.14 | 5600 | 0.5167          | 0.8799   | 0.8907    | 0.8799 | 0.8795 | 0.9148 |

| 0.6604        | 24.35 | 5650 | 0.5092          | 0.8866   | 0.9011    | 0.8866 | 0.8878 | 0.9200 |

| 0.6604        | 24.57 | 5700 | 0.5048          | 0.8961   | 0.9069    | 0.8961 | 0.8965 | 0.9270 |

| 0.6604        | 24.78 | 5750 | 0.5303          | 0.8839   | 0.8973    | 0.8839 | 0.8835 | 0.9186 |

| 0.6604        | 25.0  | 5800 | 0.4996          | 0.8934   | 0.9041    | 0.8934 | 0.8939 | 0.9242 |

| 0.6595        | 25.22 | 5850 | 0.5095          | 0.8934   | 0.9033    | 0.8934 | 0.8927 | 0.9242 |

| 0.6595        | 25.43 | 5900 | 0.5109          | 0.8920   | 0.9024    | 0.8920 | 0.8921 | 0.9232 |

| 0.6595        | 25.65 | 5950 | 0.4993          | 0.8893   | 0.8973    | 0.8893 | 0.8890 | 0.9219 |

| 0.6595        | 25.86 | 6000 | 0.4954          | 0.8934   | 0.9022    | 0.8934 | 0.8928 | 0.9247 |

| 0.6347        | 26.08 | 6050 | 0.4939          | 0.8988   | 0.9076    | 0.8988 | 0.8986 | 0.9279 |

| 0.6347        | 26.29 | 6100 | 0.4820          | 0.8974   | 0.9049    | 0.8974 | 0.8970 | 0.9270 |

| 0.6347        | 26.51 | 6150 | 0.5168          | 0.8880   | 0.8952    | 0.8880 | 0.8869 | 0.9205 |

| 0.6347        | 26.72 | 6200 | 0.5275          | 0.8839   | 0.8916    | 0.8839 | 0.8827 | 0.9181 |

| 0.6347        | 26.94 | 6250 | 0.5026          | 0.8907   | 0.8991    | 0.8907 | 0.8898 | 0.9219 |

| 0.6361        | 27.16 | 6300 | 0.5003          | 0.8988   | 0.9076    | 0.8988 | 0.8984 | 0.9275 |

| 0.6361        | 27.37 | 6350 | 0.4777          | 0.8988   | 0.9069    | 0.8988 | 0.8984 | 0.9275 |

| 0.6361        | 27.59 | 6400 | 0.4904          | 0.8988   | 0.9079    | 0.8988 | 0.8986 | 0.9275 |

| 0.6361        | 27.8  | 6450 | 0.4885          | 0.9001   | 0.9084    | 0.9001 | 0.8998 | 0.9285 |

| 0.631         | 28.02 | 6500 | 0.5134          | 0.8893   | 0.8973    | 0.8893 | 0.8882 | 0.9209 |

| 0.631         | 28.23 | 6550 | 0.5128          | 0.8920   | 0.9011    | 0.8920 | 0.8916 | 0.9232 |

| 0.631         | 28.45 | 6600 | 0.5136          | 0.8947   | 0.9032    | 0.8947 | 0.8942 | 0.9251 |

| 0.631         | 28.66 | 6650 | 0.5148          | 0.8907   | 0.8998    | 0.8907 | 0.8900 | 0.9219 |

| 0.631         | 28.88 | 6700 | 0.5143          | 0.8893   | 0.8971    | 0.8893 | 0.8883 | 0.9215 |

| 0.6104        | 29.09 | 6750 | 0.5237          | 0.8853   | 0.8952    | 0.8853 | 0.8844 | 0.9181 |

| 0.6104        | 29.31 | 6800 | 0.5187          | 0.8880   | 0.8976    | 0.8880 | 0.8873 | 0.9200 |

| 0.6104        | 29.53 | 6850 | 0.5183          | 0.8866   | 0.8964    | 0.8866 | 0.8860 | 0.9190 |

| 0.6104        | 29.74 | 6900 | 0.5172          | 0.8907   | 0.9006    | 0.8907 | 0.8899 | 0.9219 |

| 0.6104        | 29.96 | 6950 | 0.5141          | 0.8907   | 0.9001    | 0.8907 | 0.8902 | 0.9219 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1