fylex commited on
Commit
a8b5702
·
verified ·
1 Parent(s): 01db41f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -2
README.md CHANGED
@@ -6,6 +6,99 @@ metrics:
6
  base_model:
7
  - BobMcDear/swin_s3_base_224
8
  pipeline_tag: image-classification
 
9
  ---
10
- # Simple Image Classification Swin Model
11
- ### Trained on Pascal VOC2017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  base_model:
7
  - BobMcDear/swin_s3_base_224
8
  pipeline_tag: image-classification
9
+ license: apache-2.0
10
  ---
11
+ # 🦢 Swin S3 Base (224) - Pascal VOC
12
+
13
+ A Swin S3 Base model fine-tuned on the Pascal VOC 2012 dataset for multi-class image classification.
14
+
15
+ ---
16
+
17
+ ## 🧠 Model Details
18
+
19
+ - **Architecture**: Swin S3 Base (`224x224` input size)
20
+ - **Pretrained on**: ImageNet-1k
21
+ - **Fine-tuned on**: Pascal VOC 2012
22
+ - **Framework**: PyTorch (`timm` implementation)
23
+ - **Format**: `safetensors`
24
+
25
+ ---
26
+
27
+ ## 🎯 Intended Use
28
+
29
+ - **Primary task**: Image classification of natural scenes featuring objects from 20 Pascal VOC categories.
30
+ - **Users**: Researchers, developers working on computer vision applications, model benchmarking.
31
+ - **Not intended for**: Real-time decision making in critical applications (e.g., autonomous vehicles, medical diagnosis).
32
+
33
+ ---
34
+
35
+ ## ⚠️ Limitations and Ethical Considerations
36
+
37
+ - **Biases**: The model inherits biases present in Pascal VOC, such as underrepresentation of certain object types, contexts, or demographics. It may perform poorly on out-of-distribution samples.
38
+ - **Ethical Use**: Avoid using this model for applications that could reinforce harmful stereotypes, cause social harm, or violate privacy (e.g., surveillance).
39
+ - **Transparency**: This model is shared for research and educational use and should not be deployed without thorough fairness, robustness, and security evaluations.
40
+
41
+ ---
42
+
43
+ ## ⚙️ Training Details
44
+
45
+ - **Training library**: `timm` + PyTorch
46
+ - **Epochs**: 5
47
+ - **Batch size**: 16
48
+ - **Optimizer**: AdamW
49
+ - **Learning rate**: 5e-5
50
+ - **Scheduler**: Cosine Annealing
51
+ - **Loss function**: BCE
52
+ - **Hardware**: 1x NVIDIA A100 on Google Colab Pro
53
+
54
+ > ℹ️ [Link to experiment tracking dashboard (e.g., Weights & Biases)](https://wandb.ai/your-project/your-run-id) *(optional)*
55
+
56
+ ---
57
+
58
+ ## 📊 Evaluation Results
59
+
60
+ Evaluated on Pascal VOC 2012 test set:
61
+
62
+ | Metric | Value |
63
+ |----------------|-------------|
64
+ |roc_auc | 98.9% |
65
+
66
+ > *Note: Evaluation performed using standard multi-class metrics. Model was not evaluated on cross-domain generalization.*
67
+
68
+ ---
69
+
70
+ ## 📚 Dataset
71
+
72
+ - **Name**: Pascal VOC 2012
73
+ - **License**: Creative Commons Attribution 4.0 International
74
+ - **Labels**: 20 object categories (person, car, dog, etc.)
75
+ - **Split used**: Training for fine-tuning, validation for evaluation
76
+
77
+ ---
78
+
79
+ ## 💾 Files in This Repository
80
+
81
+ - `model.safetensors`: Model weights
82
+ - `README.md`: Model card (this file)
83
+
84
+ ---
85
+
86
+ ## 🔗 Citations
87
+
88
+ ```bibtex
89
+ @inproceedings{liu2021swin,
90
+ title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
91
+ author={Liu, Ze and Lin, Yutong and Cao, Yu and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
92
+ booktitle={ICCV},
93
+ year={2021}
94
+ }
95
+
96
+ @article{Everingham10,
97
+ author = {Everingham, M. and Van Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.},
98
+ title = {The Pascal Visual Object Classes (VOC) Challenge},
99
+ journal = {IJCV},
100
+ year = {2010},
101
+ volume = {88},
102
+ number = {2},
103
+ pages = {303--338}
104
+ }