fzn0x commited on
Commit
21859d5
·
verified ·
1 Parent(s): 5f3a790

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -162
README.md CHANGED
@@ -1,199 +1,100 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
126
 
127
- ### Results
128
 
129
- [More Information Needed]
 
 
 
 
130
 
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+ # Fine-tuned BERT-base-uncased pre-trained model to classify spam SMS.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ Github: https://github.com/fzn0x/bert-sms-classification
4
 
5
+ My second project in Natural Language Processing (NLP), where I fine-tuned a bert-base-uncased model to classify spam SMS. This is huge improvements from https://github.com/fzn0x/bert-indonesian-english-hate-comments.
6
 
7
+ How to use this model?
8
 
9
+ ```
10
+ model = BertForSequenceClassification.from_pretrained('fzn0x/bert-spam-classification-model')
11
+ ```
12
 
13
+ ## Install requirements
14
 
15
+ Install required dependencies
16
 
17
+ ```sh
18
+ pip install --upgrade pip
19
+ pip install -r requirements.txt
20
+ ```
21
 
22
+ ## Add BERT virtual env
23
 
24
+ write the command below
25
 
26
+ ```sh
27
+ # ✅ Create and activate a virtual environment
28
+ python -m venv bert-env
29
+ source bert-env/bin/activate # On Windows use: bert-env\Scripts\activate
30
+ ```
31
 
32
+ ## Install CUDA
33
 
34
+ Check if your GPU supports CUDA:
35
 
36
+ ```sh
37
+ nvidia-smi
38
+ ```
39
 
40
+ Then:
41
 
42
+ ```sh
43
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
44
+ PYTORCH_CUDA_ALLOC_CONF=expandable_segments:False
45
+ ```
46
 
47
+ ## 🔧 How to use
48
 
49
+ - Check your device and CUDA availability:
50
 
51
+ ```sh
52
+ python check_device.py
53
+ ```
54
 
55
+ > :warning: Using CPU is not advisable, prefer check your CUDA availability.
56
 
57
+ - Train the model:
58
 
59
+ ```sh
60
+ python scripts/train.py
61
+ ```
62
 
63
+ > :warning: Remove unneeded checkpoint in models/pretrained to save your storage after training
64
 
65
+ - Run prediction:
66
 
67
+ ```sh
68
+ python scripts/predict.py
69
+ ```
70
 
71
+ Dataset Location: [`data/spam.csv`](./data/spam.csv), modify the dataset to enhance the model based on your needs.
72
 
 
73
 
74
+ ## 📚 Citations
75
 
76
+ If you use this repository or its ideas, please cite the following:
77
 
78
+ See [`citations.bib`](./citations.bib) for full BibTeX entries.
79
 
80
+ - Wolf et al., *Transformers: State-of-the-Art Natural Language Processing*, EMNLP 2020. [ACL Anthology](https://www.aclweb.org/anthology/2020.emnlp-demos.6)
81
+ - Pedregosa et al., *Scikit-learn: Machine Learning in Python*, JMLR 2011.
82
+ - Almeida & Gómez Hidalgo, *SMS Spam Collection v.1*, UCI Machine Learning Repository (2011). [Kaggle Link](https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset)
83
 
84
+ ## 🧠 Credits and Libraries Used
85
 
86
+ - [Hugging Face Transformers](https://github.com/huggingface/transformers) – model, tokenizer, and training utilities
87
+ - [scikit-learn](https://scikit-learn.org/stable/) – metrics and preprocessing
88
+ - Logging silencing inspired by Hugging Face GitHub discussions
89
+ - Dataset from [UCI SMS Spam Collection](https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset)
90
+ - Inspiration from [Kaggle Notebook by Suyash Khare](https://www.kaggle.com/code/suyashkhare/naive-bayes)
91
 
92
+ ## License and Usage
93
 
94
+ License under [MIT license](./LICENSE).
95
 
96
+ ---
97
 
98
+ Leave a if you think this project is helpful, contributions are welcome.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ ---