File size: 10,473 Bytes
553e0d4 48b72b5 553e0d4 48b72b5 7b97687 1a95382 7b97687 553e0d4 48b72b5 553e0d4 48b72b5 553e0d4 689ccbb 1a95382 689ccbb 553e0d4 48b72b5 553e0d4 48b72b5 f50d6ca 48b72b5 553e0d4 48b72b5 553e0d4 48b72b5 553e0d4 5b510f9 48b72b5 5b510f9 48b72b5 5b510f9 48b72b5 5b510f9 48b72b5 553e0d4 48b72b5 553e0d4 48b72b5 553e0d4 48b72b5 e1a79b8 48b72b5 e1a79b8 48b72b5 e1a79b8 48b72b5 e1a79b8 48b72b5 e1a79b8 48b72b5 553e0d4 e1a79b8 48b72b5 553e0d4 48b72b5 689ccbb 48b72b5 689ccbb 48b72b5 689ccbb 48b72b5 553e0d4 48b72b5 553e0d4 48b72b5 1a95382 48b72b5 553e0d4 48b72b5 2aeec08 48b72b5 1a95382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
license: mit
---
# AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities
[Guillaume Astruc](https://gastruc.github.io/), [Nicolas Gonthier](https://ngonthier.github.io/), [Clement Mallet](https://www.umr-lastig.fr/clement-mallet/), [Loic Landrieu](https://loiclandrieu.com/)
For more details and results, please check out our [github](https://github.com/gastruc/AnySat) and [project page](https://gastruc.github.io/projects/omnisat.html).
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/m1IY9HfCD8NAeykZxqWSb.png" alt="AnySat Architecture" width="500">
</p>
# Abstract
**AnySat** is a versatile Earth Observation model designed to handle diverse data across resolutions, scales, and modalities. Using a **scale-adaptive joint embedding predictive architecture** (JEPA), AnySat can train in a self-supervised manner on highly heterogeneous datasets.
We train a single AnySat model on **GeoPlex**, a collection of 5 multimodal datasets spanning 11 sensors with varying characteristics. In fine-tuning or linear probing, AnySat achieves SOTA or near-SOTA performance for land cover segmentation, crop type classification, change detection, tree species identification, and flood mapping.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/mENiGjg5gfKH27vqr8xuB.png" alt="AnySat Teaser" width="500">
</p>
# Key Features
- 🌍 **Versatile Model**:Handles diverse datasets with resolutions spanning **3–11 channels**, tiles ranging from **0.3 to 2600 hectares**, and any combination of **11 sensors**.
- 🚀 **Simple to Use**: Install and download AnySat with a single line of code, select your desired modalities and patch size, and immediately generate rich features.
- 🦋 **Flexible Task Adaptation**: Supports fine-tuning and linear probing for tasks like **tile-wise classification** and **semantic segmentation**.
- 🧑🎓 **Multi-dataset Training**: Trains a single model across multiple datasets with varying characteristics.
# 🚀 Quickstart
Check out our [demo notebook](https://github.com/gastruc/AnySat/blob/main/demo.ipynb) or [huggingface page](https://huggingface.co/gastruc/anysat) for more details.
## Install and load Anysat
```python
import torch
AnySat = torch.hub.load('gastruc/anysat', 'anysat', pretrained=True, flash_attn=False)
```
Set `flash_attn=True` if you have [flash-attn](https://pypi.org/project/flash-attn/) module installed. It is not required and only impacts memory and speed.
## Format your data
Arrange your data in a dictionary with any of the following keys:
| Dataset | Description | Tensor Size | Channels | Resolution |
|---------------|-----------------------------------|-----------------------------------------|-------------------------------------------|------------|
| aerial | Single date tensor |Bx4xHxW | RGB, NiR | 0.2m |
| aerial-flair | Single date tensor |Bx5xHxW | RGB, NiR, Elevation | 0.2m |
| spot | Single date tensor |Bx3xHxW | RGB | 1m |
| naip | Single date tensor |Bx4xHxW | RGB | 1.25m |
| s2 | Time series tensor |BxTx10xHxW | B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12 | 10m |
| s1-asc | Time series tensor |BxTx2xHxW | VV, VH | 10m |
| s1 | Time series tensor |BxTx3xHxW | VV, VH, Ratio | 10m |
| alos | Time series tensor |BxTx3xHxW | HH, HV, Ratio | 30m |
| l7 | Time series tensor |BxTx6xHxW | B1, B2, B3, B4, B5, B7 | 30m |
| l8 | Time series tensor |BxTx11xHxW | B8, B1, B2, B3, B4, B5, B6, B7, B9, B10, B11 | 10m |
| modis | Time series tensor |BxTx7xHxW | B1, B2, B3, B4, B5, B6, B7 | 250m |
Note that time series requires a `_dates` companion tensor containing the day of the year: 01/01 = 0, 31/12=364.
**Example Input** for a tile of 60x60m and a batch size of B:
```python
data = {
"aerial": ... #Tensor of size [B, 4, 300, 300] : 4 channels, 300x300 pixels at 20cm res
"spot": ... #Tensor of size [B, 3, 60, 60]: 3 channels, 60x60 pixels at 1m res
"s2": ... #Tensor of size [B, 12, 10, 6, 6] : 12 dates, 10 channels, 6x6 pixels at 10m res
"s2_dates": ... #Tensor of size [B, 12] : 12 dates
}
```
Ensure that the spatial extent of each modality multiplied by its resolution is consistent.
## Extract Features
Decide on:
- **Patch size** (in m, must be a multiple of 10): adjust according to the scale of your tiles and GPU memory. In general, avoid having more than 1024 patches per tile.
- **Output type**: Choose between:
- `'tile'`: Single vector per tile
- `'patch'`: A vector per patch
- `'dense'`: A vector per sub-patch
- `'all'`: a tuple with all three outputs
The sub patches are `1x1` pixels for time series and `10x10` pixels for VHR images. If using `output='dense'`, specify the `output_modality`.
Example use:
```python
features = AnySat(data, scale=10, output='tile') #tensor of size [D,]
features = AnySat(data, scale=10, output='patch') #tensor of size [D,6,6]
features = AnySat(data, scale=20, output='patch') #tensor of size [D,3,3]
features = AnySat(data, scale=20, output='dense', output_modality='aerial') #tensor of size [D,30,30]
```
**Explanation for the size of the dense map:** `d=10` for 'aerial' which has a 0.2m resolution, the sub-patches are 2x2 m.
# Advanced Installation
## Install from source
```bash
# clone project
git clone https://github.com/gastruc/anysat
cd anysat
# [OPTIONAL] create conda environment
conda create -n anysat python=3.9
conda activate anysat
# install requirements
pip install -r requirements.txt
# Create data folder where you can put your datasets
mkdir data
# Create logs folder
mkdir logs
```
## Run Locally
To load the model locally, you can use the following code:
```python
from hubconf import AnySat
AnySat = AnySat.from_pretrained('base', flash_attn=False) #Set flash_attn=True if you have flash-attn module installed
#For now, only base is available.
#device = "cuda" If you want to run on GPU default is cpu
```
Every experience of the paper has its config file. Feel free to explore `configs/exp` folder.
```bash
# Run AnySat pretraining on GeoPlex
python src/train.py exp=GeoPlex_AnySAT
# Run AnySat finetuning on BraDD-S1TS
python src/train.py exp=BraDD_AnySAT_FT
# Run AnySat linear probing on BraDD-S1TS
python src/train.py exp=BraDD_AnySAT_LP
```
# Supported Datasets
Our implementation already supports 9 datasets:
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/nGGz8kiDdeTJqIPSdrlSz.png" alt="AnySat Datasets" width="500">
</p>
## GeoPlex Datasets
1. **TreeSatAI-TS**
- **Description**: Multimodal dataset for tree species identification.
- **Extent**: 50,381 tiles covering 180 km² with multi-label annotations across 20 classes.
- **Modalities**: VHR images (0.2 m), Sentinel-2 time series, Sentinel-1 time series.
- **Tasks**: Tree species classification.
2. **PASTIS-HD**
- **Description**: Crop mapping dataset with delineated agricultural parcels.
- **Extent**: 2,433 tiles covering 3986 km² with annotations across 18 crop types.
- **Modalities**: SPOT6/7 VHR imagery (1.5 m), Sentinel-2 time series, Sentinel-1 time series.
- **Tasks**: Classification, semantic segmentation, panoptic segmentation.
3. **FLAIR**
- **Description**: Land cover dataset combining VHR aerial imagery with Sentinel-2 time series.
- **Extent**: 77,762 tiles covering 815 km² with annotations across 13 land cover classes.
- **Modalities**: VHR images (0.2 m), Sentinel-2 time series.
- **Tasks**: Land cover mapping.
4. **PLANTED**
- **Description**: Global forest dataset for tree species identification.
- **Extent**: 1,346,662 tiles covering 33,120 km² with annotations across 40 classes.
- **Modalities**: Sentinel-2, Landsat-7, MODIS, Sentinel-1, ALOS-2.
- **Tasks**: Tree species classification.
5. **S2NAIP-URBAN**
- **Description**: Urban dataset with high-resolution imagery and time series data.
- **Extent**: 515,270 tiles covering 211,063 km² with NAIP, Sentinel-2, Sentinel-1, and Landsat-8/9 data.
- **Modalities**: NAIP (1.25 m), Sentinel-2 time series, Sentinel-1 time series, Landsat-8/9.
- **Tasks**: Pretraining only (no official labels).
## External Evaluation Datasets
1. **BraDD-S1TS**
- **Description**: Change detection dataset for deforestation in the Amazon rainforest.
- **Extent**: 13,234 tiles with Sentinel-1 time series.
- **Tasks**: Change detection (deforestation segmentation).
2. **SICKLE**
- **Description**: Multimodal crop mapping dataset from India.
- **Extent**: 34,848 tiles with Sentinel-1, Sentinel-2, and Landsat-8 time series.
- **Tasks**: Crop type classification (paddy/non-paddy).
3. **TimeSen2Crop**
- **Description**: Crop mapping dataset from Slovenia.
- **Extent**: 1,212,224 single-pixel Sentinel-2 time series.
- **Tasks**: Crop type classification.
4. **Sen1Flood11**
- **Description**: Flood mapping dataset with global scope.
- **Extent**: 4.8K Sentinel-1/2 time series.
- **Tasks**: Flood classification (flooded/ not flooded).
# Reference
Please use the following bibtex:
```bibtex
@article{astruc2024anysat,
title={{AnySat: An Earth} Observation Model for Any Resolutions, Scales, and Modalities},
author={Astruc, Guillaume and Gonthier, Nicolas and Mallet, Clement and Landrieu, Loic},
journal={arXiv preprint arXiv:2412.14123},
year={2024}
}
``` |