Upload qlora.py
Browse files- code/qlora.py +183 -0
code/qlora.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, os, wandb, uuid, json
|
2 |
+
import bitsandbytes as bnb
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, BitsAndBytesConfig, TrainerCallback
|
4 |
+
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model
|
5 |
+
from accelerate import Accelerator
|
6 |
+
from accelerate.utils import set_seed
|
7 |
+
from datasets import load_dataset, DatasetDict, Dataset,load_from_disk
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
set_seed(42)
|
11 |
+
|
12 |
+
accelerator = Accelerator()
|
13 |
+
run_id = str(uuid.uuid4())
|
14 |
+
modelpath="microsoft/phi-2"
|
15 |
+
dataset_name="teknium/OpenHermes-2.5"
|
16 |
+
lr=0.00002
|
17 |
+
bs=10 # batch size
|
18 |
+
bs_eval=16 # batch size for evals
|
19 |
+
ga_steps=4 # gradient acc. steps
|
20 |
+
epochs=1
|
21 |
+
max_length=1024
|
22 |
+
output_dir=f"out_{run_id}"
|
23 |
+
|
24 |
+
# Load model
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
modelpath,
|
27 |
+
device_map={"": accelerator.process_index},
|
28 |
+
quantization_config=BitsAndBytesConfig(
|
29 |
+
load_in_4bit=True,
|
30 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
31 |
+
bnb_4bit_quant_type="nf4",
|
32 |
+
),
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
+
# does not work yet
|
35 |
+
# attn_implementation="flash_attention_2",
|
36 |
+
)
|
37 |
+
|
38 |
+
# Load Tokenizer
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(modelpath, use_fast=False) # fast tokenizer sometimes ignores the added tokens
|
40 |
+
|
41 |
+
# Add tokens <|im_start|> and <|im_end|>, latter is special eos token,
|
42 |
+
tokenizer.add_tokens(["<|im_start|>", "<PAD>"])
|
43 |
+
tokenizer.pad_token = "<PAD>"
|
44 |
+
tokenizer.add_special_tokens(dict(eos_token="<|im_end|>"))
|
45 |
+
model.config.eos_token_id = tokenizer.eos_token_id
|
46 |
+
|
47 |
+
# Add adapters to model
|
48 |
+
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
|
49 |
+
|
50 |
+
lora_config = LoraConfig(
|
51 |
+
r=32,
|
52 |
+
lora_alpha=32,
|
53 |
+
target_modules = [ "q_proj", "k_proj", "v_proj", "dense" ],
|
54 |
+
modules_to_save = ["lm_head", "embed_tokens"],
|
55 |
+
lora_dropout=0.1,
|
56 |
+
bias="none",
|
57 |
+
task_type="CAUSAL_LM",
|
58 |
+
)
|
59 |
+
model = get_peft_model(model, lora_config)
|
60 |
+
|
61 |
+
model.config.use_cache = False
|
62 |
+
|
63 |
+
# Print stats
|
64 |
+
if accelerator.is_main_process:
|
65 |
+
model.print_trainable_parameters()
|
66 |
+
|
67 |
+
# Load dataset
|
68 |
+
with accelerator.main_process_first():
|
69 |
+
dataset = load_dataset(dataset_name)
|
70 |
+
dataset = dataset["train"].train_test_split(test_size=0.1)
|
71 |
+
|
72 |
+
# Format (chatML) and tokenize dataset
|
73 |
+
templates= {
|
74 |
+
"system": "<|im_start|>system\n{msg}<|im_end|>",
|
75 |
+
"human": "<|im_start|>user\n{msg}<|im_end|>",
|
76 |
+
"gpt": "<|im_start|>assistant\n{msg}<|im_end|>",
|
77 |
+
}
|
78 |
+
IGNORE_INDEX=-100
|
79 |
+
|
80 |
+
def tokenize(input, max_length):
|
81 |
+
input_ids, attention_mask, labels = [], [], []
|
82 |
+
|
83 |
+
for i,msg in enumerate(input["conversations"]):
|
84 |
+
msg_role=msg["from"]
|
85 |
+
msg_content=msg["value"]
|
86 |
+
isHuman=msg_role=="human"
|
87 |
+
if not msg_role in templates: return # this will break it
|
88 |
+
msg_chatml=templates[msg_role].format(msg=msg_content)
|
89 |
+
msg_tokenized=tokenizer(msg_chatml, truncation=False, add_special_tokens=False)
|
90 |
+
|
91 |
+
input_ids+=msg_tokenized["input_ids"]
|
92 |
+
attention_mask+=msg_tokenized["attention_mask"]
|
93 |
+
labels+=[IGNORE_INDEX]*len(msg_tokenized["input_ids"]) if isHuman else msg_tokenized["input_ids"]
|
94 |
+
|
95 |
+
return {
|
96 |
+
"input_ids": input_ids[:max_length],
|
97 |
+
"attention_mask": attention_mask[:max_length],
|
98 |
+
"labels": labels[:max_length],
|
99 |
+
}
|
100 |
+
|
101 |
+
dataset_tokenized = dataset.map(
|
102 |
+
partial(tokenize, max_length=max_length),
|
103 |
+
batched=False,
|
104 |
+
# num_proc=os.cpu_count()//accelerator.num_processes, # multithreaded
|
105 |
+
num_proc=os.cpu_count(), # multithreaded
|
106 |
+
remove_columns=dataset["train"].column_names # don't need this anymore, we have tokens from here on
|
107 |
+
)
|
108 |
+
|
109 |
+
# collate function - to transform list of dictionaries [ {input_ids: [123, ..]}, {.. ] to single batch dictionary { input_ids: [..], labels: [..], attention_mask: [..] }
|
110 |
+
def collate(elements):
|
111 |
+
tokens=[e["input_ids"] for e in elements]
|
112 |
+
tokens_maxlen=max([len(t) for t in tokens])
|
113 |
+
|
114 |
+
for i,sample in enumerate(elements):
|
115 |
+
input_ids=sample["input_ids"]
|
116 |
+
labels=sample["labels"]
|
117 |
+
attention_mask=sample["attention_mask"]
|
118 |
+
|
119 |
+
pad_len=tokens_maxlen-len(input_ids)
|
120 |
+
|
121 |
+
input_ids.extend( pad_len * [tokenizer.pad_token_id] )
|
122 |
+
labels.extend( pad_len * [IGNORE_INDEX] )
|
123 |
+
attention_mask.extend( pad_len * [0] )
|
124 |
+
|
125 |
+
batch={
|
126 |
+
"input_ids": torch.tensor( [e["input_ids"] for e in elements] ),
|
127 |
+
"labels": torch.tensor( [e["labels"] for e in elements] ),
|
128 |
+
"attention_mask": torch.tensor( [e["attention_mask"] for e in elements] ),
|
129 |
+
}
|
130 |
+
|
131 |
+
return batch
|
132 |
+
|
133 |
+
steps_per_epoch=len(dataset_tokenized["train"])//(accelerator.num_processes*bs*ga_steps)
|
134 |
+
|
135 |
+
args = TrainingArguments(
|
136 |
+
output_dir=output_dir,
|
137 |
+
per_device_train_batch_size=bs,
|
138 |
+
per_device_eval_batch_size=bs_eval,
|
139 |
+
evaluation_strategy="steps",
|
140 |
+
logging_steps=1,
|
141 |
+
eval_steps=steps_per_epoch//3, # 2 evals per epoch
|
142 |
+
save_steps=steps_per_epoch//3, # save once per epoch
|
143 |
+
gradient_accumulation_steps=ga_steps,
|
144 |
+
num_train_epochs=epochs,
|
145 |
+
lr_scheduler_type="constant",
|
146 |
+
optim="paged_adamw_32bit", # val_loss will go nan with paged_adamw_8bit
|
147 |
+
learning_rate=lr,
|
148 |
+
group_by_length=False,
|
149 |
+
bf16=True,
|
150 |
+
ddp_find_unused_parameters=False,
|
151 |
+
)
|
152 |
+
|
153 |
+
trainer = Trainer(
|
154 |
+
model=model,
|
155 |
+
tokenizer=tokenizer,
|
156 |
+
args=args,
|
157 |
+
data_collator=collate,
|
158 |
+
train_dataset=dataset_tokenized["train"],
|
159 |
+
eval_dataset=dataset_tokenized["test"],
|
160 |
+
)
|
161 |
+
|
162 |
+
if accelerator.is_main_process:
|
163 |
+
run = wandb.init(
|
164 |
+
project="phi2-teknium1",
|
165 |
+
name=modelpath+"_"+dataset_name+f"_bs-{bs}_LR-{lr}_GPUs-{accelerator.num_processes}_maxlen-{max_length}_{run_id}",
|
166 |
+
config={
|
167 |
+
"model_name": modelpath,
|
168 |
+
"run_id": run_id,
|
169 |
+
"dataset": dataset_name,
|
170 |
+
"output_dir": output_dir,
|
171 |
+
"lr": lr,
|
172 |
+
"max_length": max_length,
|
173 |
+
"train_batch_size": bs,
|
174 |
+
"validation_batch_size": bs,
|
175 |
+
"ga_steps": ga_steps,
|
176 |
+
"lora_config": lora_config,
|
177 |
+
"training_args": args,
|
178 |
+
"GPUs": accelerator.num_processes,
|
179 |
+
}
|
180 |
+
)
|
181 |
+
run.log_code()
|
182 |
+
|
183 |
+
trainer.train()
|