|
from numpy.core.fromnumeric import size |
|
from base_explainer import BaseExplainer |
|
import tensorflow.keras as keras |
|
import tensorflow as tf |
|
import numpy as np |
|
from PIL import Image |
|
import matplotlib.cm as cm |
|
import cv2 |
|
|
|
class GradCAMExplainer(BaseExplainer): |
|
|
|
|
|
def get_explanation(self, img, model, img_size, props, preprocess_input = None, index=None): |
|
|
|
clone = tf.keras.models.clone_model(model) |
|
clone.layers[-1].activation = None |
|
|
|
|
|
grad_model = tf.keras.models.Model([clone.inputs], [clone.get_layer(props["conv_layer"]).output, clone.output]) |
|
|
|
img_array = self.get_img_array(img, size = img_size) |
|
|
|
if preprocess_input: |
|
img_procecessed_array = preprocess_input(img_array) |
|
else: |
|
img_procecessed_array = img_array |
|
|
|
heatmap = self.__make_gradcam_heatmap(img_procecessed_array, grad_model, props["conv_layer"], pred_index=index) |
|
|
|
heat, mask = self.__save_and_display_gradcam(img, heatmap) |
|
|
|
return keras.preprocessing.image.array_to_img(heat) |
|
|
|
|
|
|
|
def get_img_array(self, img_path, size, expand=True): |
|
|
|
img = keras.preprocessing.image.load_img(img_path, target_size=size) |
|
|
|
array = keras.preprocessing.image.img_to_array(img) |
|
|
|
|
|
if expand: |
|
array = np.expand_dims(array, axis=0) |
|
return array |
|
|
|
def __make_gradcam_heatmap(self, img_array, grad_model, last_conv_layer_name, pred_index=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with tf.GradientTape() as tape: |
|
last_conv_layer_output, preds = grad_model(img_array) |
|
if pred_index is None: |
|
pred_index = tf.argmax(preds[0]) |
|
class_channel = preds[:, pred_index] |
|
|
|
|
|
|
|
grads = tape.gradient(class_channel, last_conv_layer_output) |
|
|
|
|
|
|
|
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) |
|
|
|
|
|
|
|
|
|
last_conv_layer_output = last_conv_layer_output[0] |
|
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] |
|
heatmap = tf.squeeze(heatmap) |
|
|
|
|
|
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) |
|
heatmap = heatmap.numpy() |
|
return heatmap |
|
|
|
def __save_and_display_gradcam(self, img_path, heatmap, cam_path="cam.jpg", alpha=0.4): |
|
|
|
img = keras.preprocessing.image.load_img(img_path) |
|
img = keras.preprocessing.image.img_to_array(img) |
|
|
|
|
|
heatmap = np.uint8(255 * heatmap) |
|
|
|
|
|
jet = cm.get_cmap("jet") |
|
|
|
|
|
jet_colors = jet(np.arange(256))[:, :3] |
|
jet_heatmap = jet_colors[heatmap] |
|
|
|
|
|
jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap) |
|
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) |
|
jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap) |
|
|
|
im = Image.fromarray(heatmap) |
|
im = im.resize((img.shape[1], img.shape[0])) |
|
|
|
im = np.asarray(im) |
|
im = np.where(im > 0, 1, im) |
|
|
|
|
|
|
|
superimposed_img = jet_heatmap * alpha + img |
|
|
|
return superimposed_img, im |