grapevine_classification / gui /gradcampp_explainer.py
gabri14el's picture
Upload with huggingface_hub
e6b3e35
from numpy.core.fromnumeric import size
from base_explainer import BaseExplainer
import tensorflow.keras as keras
import tensorflow as tf
import numpy as np
from PIL import Image
import matplotlib.cm as cm
import cv2
class GradCAMPPExplainer(BaseExplainer):
#implementacao do metodo abstrato
def get_explanation(self, img, model, img_size, props, preprocess_input = None, index=None):
#clona o modelo e remove a softmax da ultima camada
clone = tf.keras.models.clone_model(model)
clone.layers[-1].activation = None
#cria modelo grad-cam
grad_model = tf.keras.models.Model([clone.inputs], [clone.get_layer(props["conv_layer"]).output, clone.output])
#transforma a imagem em array
img_array = self.get_img_array(img, size = img_size, expand=False)
#pre processa a imagem
if preprocess_input:
img_procecessed_array = preprocess_input(img_array)
else:
img_procecessed_array = img_array
#faz o heatmap
heatmap = self.__grad_cam_plus(grad_model, img_procecessed_array, props["conv_layer"], index)
#poe o heatmap na imagem
heat, mask = self.__save_and_display_gradcam(img, heatmap)
return keras.preprocessing.image.array_to_img(heat)
#transforma a imagem em array
def get_img_array(self, img_path, size, expand=True):
# `img` is a PIL image of size 299x299
img = keras.preprocessing.image.load_img(img_path, target_size=size)
# `array` is a float32 Numpy array of shape (299, 299, 3)
array = keras.preprocessing.image.img_to_array(img)
# We add a dimension to transform our array into a "batch"
# of size (1, 299, 299, 3)
if expand:
array = np.expand_dims(array, axis=0)
return array
#implementacao do grad-cam++
def __grad_cam_plus(self, model, img, layer_name, category_id=None):
img_tensor = np.expand_dims(img, axis=0)
with tf.GradientTape() as gtape1:
with tf.GradientTape() as gtape2:
with tf.GradientTape() as gtape3:
conv_output, predictions = model(img_tensor)
if category_id==None:
category_id = tf.argmax(predictions[0])
print(category_id)
output = predictions[:, category_id]
conv_first_grad = gtape3.gradient(output, conv_output)
conv_second_grad = gtape2.gradient(conv_first_grad, conv_output)
conv_third_grad = gtape1.gradient(conv_second_grad, conv_output)
global_sum = np.sum(conv_output, axis=(0, 1, 2))
alpha_num = conv_second_grad[0]
alpha_denom = conv_second_grad[0]*2.0 + conv_third_grad[0]*global_sum
alpha_denom = np.where(alpha_denom != 0.0, alpha_denom, 1e-10)
alphas = alpha_num/alpha_denom
alpha_normalization_constant = np.sum(alphas, axis=(0,1))
alphas /= alpha_normalization_constant
weights = np.maximum(conv_first_grad[0], 0.0)
deep_linearization_weights = np.sum(weights*alphas, axis=(0,1))
grad_CAM_map = np.sum(deep_linearization_weights*conv_output[0], axis=2)
heatmap = tf.maximum(grad_CAM_map, 0) / tf.math.reduce_max(grad_CAM_map)
heatmap = heatmap.numpy()
return heatmap
def __save_and_display_gradcam(self, img_path, heatmap, cam_path="cam.jpg", alpha=0.4):
# Load the original image
img = keras.preprocessing.image.load_img(img_path)
img = keras.preprocessing.image.img_to_array(img)
# Rescale heatmap to a range 0-255
heatmap = np.uint8(255 * heatmap)
im = Image.fromarray(heatmap)
im = im.resize((img.shape[1], img.shape[0]))
im = np.asarray(im)
im = np.where(im > 0, 1, im)
# Use jet colormap to colorize heatmap
jet = cm.get_cmap("jet")
# Use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# Create an image with RGB colorized heatmap
jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap)
# Superimpose the heatmap on original image
superimposed_img = jet_heatmap * alpha + img
#superimposed_img = keras.preprocessing.image.array_to_img(superimposed_img)
# Save the superimposed image
#superimposed_img.save(cam_path)
# Display Grad CAM
#display(Image(cam_path))
return superimposed_img, im