|
from numpy.core.fromnumeric import size |
|
from base_explainer import BaseExplainer |
|
import tensorflow.keras as keras |
|
import tensorflow as tf |
|
import numpy as np |
|
from PIL import Image |
|
import matplotlib.cm as cm |
|
import cv2 |
|
|
|
class GradCAMPPExplainer(BaseExplainer): |
|
|
|
|
|
def get_explanation(self, img, model, img_size, props, preprocess_input = None, index=None): |
|
|
|
clone = tf.keras.models.clone_model(model) |
|
clone.layers[-1].activation = None |
|
|
|
|
|
grad_model = tf.keras.models.Model([clone.inputs], [clone.get_layer(props["conv_layer"]).output, clone.output]) |
|
|
|
img_array = self.get_img_array(img, size = img_size, expand=False) |
|
|
|
if preprocess_input: |
|
img_procecessed_array = preprocess_input(img_array) |
|
else: |
|
img_procecessed_array = img_array |
|
|
|
heatmap = self.__grad_cam_plus(grad_model, img_procecessed_array, props["conv_layer"], index) |
|
|
|
heat, mask = self.__save_and_display_gradcam(img, heatmap) |
|
|
|
|
|
return keras.preprocessing.image.array_to_img(heat) |
|
|
|
|
|
|
|
def get_img_array(self, img_path, size, expand=True): |
|
|
|
img = keras.preprocessing.image.load_img(img_path, target_size=size) |
|
|
|
array = keras.preprocessing.image.img_to_array(img) |
|
|
|
|
|
if expand: |
|
array = np.expand_dims(array, axis=0) |
|
return array |
|
|
|
|
|
def __grad_cam_plus(self, model, img, layer_name, category_id=None): |
|
img_tensor = np.expand_dims(img, axis=0) |
|
|
|
with tf.GradientTape() as gtape1: |
|
with tf.GradientTape() as gtape2: |
|
with tf.GradientTape() as gtape3: |
|
conv_output, predictions = model(img_tensor) |
|
if category_id==None: |
|
category_id = tf.argmax(predictions[0]) |
|
print(category_id) |
|
output = predictions[:, category_id] |
|
conv_first_grad = gtape3.gradient(output, conv_output) |
|
conv_second_grad = gtape2.gradient(conv_first_grad, conv_output) |
|
conv_third_grad = gtape1.gradient(conv_second_grad, conv_output) |
|
|
|
global_sum = np.sum(conv_output, axis=(0, 1, 2)) |
|
|
|
alpha_num = conv_second_grad[0] |
|
alpha_denom = conv_second_grad[0]*2.0 + conv_third_grad[0]*global_sum |
|
alpha_denom = np.where(alpha_denom != 0.0, alpha_denom, 1e-10) |
|
|
|
alphas = alpha_num/alpha_denom |
|
alpha_normalization_constant = np.sum(alphas, axis=(0,1)) |
|
alphas /= alpha_normalization_constant |
|
|
|
weights = np.maximum(conv_first_grad[0], 0.0) |
|
|
|
deep_linearization_weights = np.sum(weights*alphas, axis=(0,1)) |
|
grad_CAM_map = np.sum(deep_linearization_weights*conv_output[0], axis=2) |
|
|
|
heatmap = tf.maximum(grad_CAM_map, 0) / tf.math.reduce_max(grad_CAM_map) |
|
|
|
heatmap = heatmap.numpy() |
|
return heatmap |
|
|
|
def __save_and_display_gradcam(self, img_path, heatmap, cam_path="cam.jpg", alpha=0.4): |
|
|
|
img = keras.preprocessing.image.load_img(img_path) |
|
img = keras.preprocessing.image.img_to_array(img) |
|
|
|
|
|
heatmap = np.uint8(255 * heatmap) |
|
im = Image.fromarray(heatmap) |
|
im = im.resize((img.shape[1], img.shape[0])) |
|
|
|
im = np.asarray(im) |
|
im = np.where(im > 0, 1, im) |
|
|
|
|
|
jet = cm.get_cmap("jet") |
|
|
|
|
|
jet_colors = jet(np.arange(256))[:, :3] |
|
jet_heatmap = jet_colors[heatmap] |
|
|
|
|
|
|
|
|
|
jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap) |
|
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) |
|
jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap) |
|
|
|
|
|
superimposed_img = jet_heatmap * alpha + img |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return superimposed_img, im |