|
import tensorflow as tf |
|
import tensorflow.keras as keras |
|
import util |
|
import numpy as np |
|
|
|
class ModelManager: |
|
models = {} |
|
TYPE_XCEPTION = "xception" |
|
TYPE_RESNET101 = "resenet101" |
|
TYPE_EFFICIENTNETB3 = "efficientnetb3" |
|
|
|
|
|
|
|
def _add_model(self, name, path, size, type_model): |
|
container = {} |
|
|
|
|
|
container["model"] = tf.keras.models.load_model(path) |
|
|
|
|
|
token = size.split(",") |
|
container["size"] = (int(token[0]), int(token[1])) |
|
|
|
|
|
if type_model == self.TYPE_XCEPTION: |
|
container["preprocessing"] = keras.applications.xception.preprocess_input |
|
container["undo_changes"] = self.xception_undo_changes |
|
|
|
elif type_model == self.TYPE_RESNET101: |
|
container["preprocessing"] = keras.applications.resnet_v2.preprocess_input |
|
container["undo_changes"] = self.resnet_undo_changes |
|
elif type_model == self.TYPE_EFFICIENTNETB3: |
|
container["preprocessing"] = keras.applications.efficientnet.preprocess_input |
|
container["undo_changes"] = self.efficientnet_undo_changes |
|
|
|
|
|
else: |
|
container["preprocessing"] = self.fake_preprocess |
|
|
|
container["undo_changes"] = self.efficientnet_undo_changes |
|
|
|
self.models[name] = container |
|
|
|
|
|
def configure_model(self, name, path, size, type_model): |
|
if not name in self.models: |
|
self._add_model(name, path, size, type_model) |
|
return self.models[name] |
|
|
|
def configure_classes(self, classes): |
|
self.CLASSES = classes |
|
self.CLASSES_NAMES = list(classes.keys()) |
|
|
|
def get_model_without_activation(self, name, path): |
|
model = self.get_model(name, path) |
|
clone = tf.keras.models.clone_model(model) |
|
|
|
clone.layers[-1].activation = None |
|
return clone |
|
|
|
def fake_preprocess(self, img): |
|
return img |
|
|
|
def make_prediction(self, model, img_path): |
|
img_array = util.get_img_array(img_path, self.models[model]["size"], expand=True) |
|
img_array_preprocessed = self.models[model]["preprocessing"](img_array) |
|
prediction = self.models[model]["model"].predict(img_array_preprocessed) |
|
print(prediction.shape) |
|
class_index = np.argmax(prediction, axis=1) |
|
result={"class_name":self.CLASSES_NAMES[class_index[0]], "score":prediction[0, class_index[0]]} |
|
|
|
print(result) |
|
return result |
|
|
|
|
|
|
|
def xception_undo_changes(self, img): |
|
return img / 2 + 0.5 |
|
|
|
|
|
|
|
def efficientnet_undo_changes(self, img): |
|
return img.astype('uint8') |
|
|
|
|
|
|
|
def resnet_undo_changes(self, img): |
|
return img / 2 + 0.5 |
|
|