Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.89 +/- 18.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e27b8c8a560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e27b8c8a5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e27b8c8a680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e27b8c8a710>", "_build": "<function ActorCriticPolicy._build at 0x7e27b8c8a7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7e27b8c8a830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e27b8c8a8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e27b8c8a950>", "_predict": "<function ActorCriticPolicy._predict at 0x7e27b8c8a9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e27b8c8aa70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e27b8c8ab00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e27b8c8ab90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e27b8c2f780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 1, "action_noise": null, "start_time": 1699117213567724429, "learning_rate": 0.003, "tensorboard_log": "tensorboard-logs/ppo-LunarLander-v2-stable-reward-penalize-time/LunarLander-v2", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHoDQz60s7Q+sE5pviCHir7WYKS88nazvAAAAAAAAAAAwHKcPU+JLbxmoE+9VY1zPYJhhz3wfhK9AACAPwAAgD96BzE+kFKRPtAxib7Sv56+XbTJvaIJAj0AAAAAAAAAANocyj38U3w+I5YOvgsSRL4JCrM64KnQvAAAAAAAAAAAgC8cPa9kNT9uWJa9Bujfvnhpsbw/OpC8AAAAAAAAAADaT7M9PbpguWv7KL3LRkM9QSi3u5edJb4AAIA/AACAP83n7z2jnDk/ErTWPKIUzr7ffMg9lURzvQAAAAAAAAAAZpyYPR49mT6mMku8e6KTvgRKDLwAx029AAAAAAAAAABmKsk7e6Kpusrwfjl8j240IFZzunRRkrgAAIA/AACAP6YXlL0V26Y/+qgvv8tmCb+0LKu6bTIQvgAAAAAAAAAA5kV+PRQol7qpgTuzrSeir2/vfTr+cMEzAACAPwAAgD/zbPI9XRGNPlEXlL2KmbC+oU37vJbTzLwAAAAAAAAAAGYejryPDmW6Sk5INwAqRTKz75Y7FRFrtgAAgD8AAIA/ZtnCPOyxm7nFP8w57UsLNVRQGDvTp/O4AACAPwAAgD8zwde8SNO2ujvw0zNJkTEwdm6COUWFrLMAAIA/AACAPxp0/D3gy8s+CXKVvnEMir7+C8m8jnsLvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIN/YnOSnuMAWyUTREBjAF0lEdAntAc8HObAnV9lChoBkdAb5cTnq3VkWgHS+loCEdAntAdSQ5my3V9lChoBkdAclAH1vl2eWgHS/BoCEdAntBaaTfR/nV9lChoBkdAcPt4Wk8A72gHS/poCEdAntJsGorFwXV9lChoBkdAcKkPu5SWJWgHS+RoCEdAntNWXTmW+3V9lChoBkdAcoJf2saKk2gHS/RoCEdAntOQ7xNIsnV9lChoBkdAazNzjFQ2uWgHS+toCEdAntPImois4nV9lChoBkdAcqHXcgyM1mgHS99oCEdAntXekk8ifXV9lChoBkdActptJnQIEGgHS9poCEdAntYXqzJIUnV9lChoBkdAcOxkjX4CZGgHS+poCEdAnta3tfG+9XV9lChoBkdAcQz6N2ki2WgHS/toCEdAntbQpvxYrHV9lChoBkdAc1BRq46OpGgHTSoBaAhHQJ7XVFRYRul1fZQoaAZHQHMKz7hvR7ZoB0vOaAhHQJ7YY7fYSQJ1fZQoaAZHQHItC6QNkOJoB0vkaAhHQJ7aCFnIyTJ1fZQoaAZHQHHpZDu0CzVoB0vzaAhHQJ7acemvW6N1fZQoaAZHQHLnYrJ8v25oB00VAWgIR0Ce2yPxQSBcdX2UKGgGR0BxDuH8CPp7aAdNJAFoCEdAntvvnW8RMHV9lChoBkdAcXBh5xBE8mgHS9toCEdAnt0LVJ+UhXV9lChoBkdAcHFUC7sfJWgHS9ZoCEdAnt07g88s+XV9lChoBkdAcYWC/GlyimgHS/5oCEdAnt2BC6YmcHV9lChoBkdAcCSp9ZzPr2gHS+doCEdAnt2VndweeXV9lChoBkfAWX9PJq7AcmgHTVoBaAhHQJ7edKcurZJ1fZQoaAZHQHIOmwA2hqVoB0vcaAhHQJ7e0ekpI+Z1fZQoaAZHQHDMH+6y0KJoB0vlaAhHQJ7fQIY3vQZ1fZQoaAZHQHG1MfA9FF5oB0vjaAhHQJ7frC/Glyl1fZQoaAZHQHKTD0UXYUZoB0vgaAhHQJ7f8Ka5PM11fZQoaAZHQHI3IZQ53khoB00DAWgIR0Ce4HD2rXDndX2UKGgGR0Bym/kmx+rmaAdLymgIR0Ce4VX9itq6dX2UKGgGR0Byfq5Zr56/aAdL3GgIR0Ce4tl18stkdX2UKGgGR0BxHjAtWdVeaAdNBgFoCEdAnuLl6/qPfnV9lChoBkdAcVsMdcSoO2gHTTsBaAhHQJ7jWofjjrB1fZQoaAZHQHA08KPXCj1oB0vWaAhHQJ7jXzVc2R91fZQoaAZHQHG2ZZB9kSVoB00PAWgIR0Ce4+LApKBedX2UKGgGR0Bx3ZNWU8msaAdL5GgIR0Ce4/KOT7l8dX2UKGgGR0Bxl94Uvf0maAdL1WgIR0Ce5J2VVxS6dX2UKGgGR0BwRomG/N7jaAdL8mgIR0Ce5KkcS5AhdX2UKGgGR0BzVBqUNayKaAdL/WgIR0Ce5N6gM+eOdX2UKGgGR0Bt/wO+ZgG9aAdL8WgIR0Ce9wueSSvDdX2UKGgGR0Bv5leyAxzraAdLzmgIR0Ce9yON5t3wdX2UKGgGR0BsyXJLdvbXaAdL5mgIR0Ce9x+BYmsvdX2UKGgGR0Bti5YA80UHaAdL5mgIR0Ce+Ei48U22dX2UKGgGR0BzUx+G47RwaAdNBQFoCEdAnvhSIxgy/XV9lChoBkdAcNHRekYXPGgHS/ZoCEdAnvmr3oLXtnV9lChoBkdAca8qB3A2ymgHS+FoCEdAnvqXAymALHV9lChoBkdAcqb/9Hc1wmgHS95oCEdAnvsGkSElFHV9lChoBkdAcE64bCJoCmgHS+loCEdAnvtVawD/2nV9lChoBkdAbfnUvPC2t2gHS/xoCEdAnvtzJIUah3V9lChoBkdAccGEf1YhdWgHS9loCEdAnvwuSB9TgnV9lChoBkdAcyVzaK1og2gHS7VoCEdAnvxgiRnvlXV9lChoBkdAc0fW56MR6GgHS/5oCEdAnvx0adc0L3V9lChoBkdAclfYjB2wFGgHS+hoCEdAnvyQjlgc+HV9lChoBkdAbo5+kP+XJGgHS95oCEdAnv2JQtSQ5nV9lChoBkdAcBl4j8k2P2gHTQcBaAhHQJ7+uzt1IRR1fZQoaAZHQHA8FG5MDfZoB0v+aAhHQJ7/+V6eGwl1fZQoaAZHQHPYhV2icoZoB0v+aAhHQJ8ABZFG5MF1fZQoaAZHQGge/mknCwdoB01VAWgIR0CfAE4oqkM1dX2UKGgGR0BxQcUSIxgzaAdL5WgIR0CfAY349HMEdX2UKGgGR0BxoCR7qptKaAdL3WgIR0CfAbngHeJpdX2UKGgGR0BxCa7BfrrxaAdNEgFoCEdAnwIG1YyO73V9lChoBkdAcS27SiM5wWgHS+BoCEdAnwIj8cdYGXV9lChoBkdAcahMbWEsa2gHS8FoCEdAnwJ8WTHKfXV9lChoBkdAb7LjQRf4RGgHS+5oCEdAnwKy1mapgnV9lChoBkdAb80XFcY64mgHS9hoCEdAnwL9rO7g9HV9lChoBkdAXXTt+kP+XWgHTegDaAhHQJ8DF1uBMBZ1fZQoaAZHQG2K8iwB5opoB0vzaAhHQJ8DepaRp111fZQoaAZHQHNDfbTMJQdoB0v3aAhHQJ8Dy1Bt1p11fZQoaAZHQHClFhXr+o9oB0vpaAhHQJ8EV43WFvh1fZQoaAZHQHD4egYgq3FoB0vzaAhHQJ8F6i0v4/N1fZQoaAZHQG2VSGahHsloB0vdaAhHQJ8GjR4QjD91fZQoaAZHQHHG1cUuctpoB0v3aAhHQJ8IBBLPD511fZQoaAZHQHEEyEHt4RpoB0vRaAhHQJ8IeqS5iEx1fZQoaAZHQHNTsoH9m6JoB0vZaAhHQJ8IkXFcY651fZQoaAZHQHJKpJ5E+gVoB00gAWgIR0CfCVewLVnVdX2UKGgGR0Bxc41aW5YpaAdL22gIR0CfCWSoOx0NdX2UKGgGR0Bt28XpGFzuaAdL5GgIR0CfCZuuA7PqdX2UKGgGR0ByD6iqQzUJaAdL1mgIR0CfCafzSThYdX2UKGgGR0BxdNhkRSP2aAdL2mgIR0CfCgFZgXuWdX2UKGgGR0BwfkotthuwaAdL5GgIR0CfCrI6bONYdX2UKGgGR0BwI0DHOryUaAdL+mgIR0CfC6gccU/OdX2UKGgGR0BtuKx9oexOaAdL4GgIR0CfC84d6sySdX2UKGgGR0BwN1KCg9NfaAdL+WgIR0CfDDbM5fdAdX2UKGgGR0Bw9unXNC7caAdL2WgIR0CfDGF/QSi/dX2UKGgGR0BwJu6K+BYnaAdL52gIR0CfDqjiXIEKdX2UKGgGR0Bx2kPBi1AraAdLxmgIR0CfD/yhzvJBdX2UKGgGR0ByGeUY8+zMaAdL2GgIR0CfEDakAPupdX2UKGgGR0ByzttO2y9maAdNCQFoCEdAnxDhjriVB3V9lChoBkfAaGHy5qdpZmgHTWEDaAhHQJ8RcgHNX5p1fZQoaAZHQHDcu/cnE2poB0vVaAhHQJ8R420iQkp1fZQoaAZHQHBGw+MZP2xoB0vyaAhHQJ8R5RCQcPx1fZQoaAZHQHFzjrNW2gFoB0vNaAhHQJ8SCIvalDZ1fZQoaAZHQHFn3XZoPCloB0vtaAhHQJ8Soa5wwTN1fZQoaAZHQHCnyl3yI55oB00IAWgIR0CfE7fpUxVRdX2UKGgGR0BtBugezUqhaAdL8mgIR0CfFGfl6qsEdX2UKGgGR0Bw7ELb5/LDaAdLyGgIR0CfFGWlMyrQdX2UKGgGR0BwtLOyE+PjaAdNKAFoCEdAnxVZqqOtGXV9lChoBkdAcM73++/QB2gHS99oCEdAnxWCdz4k/3V9lChoBkdAcEhuanaWX2gHS/poCEdAnxW7BGhEjXV9lChoBkdAcVCcCYCyQmgHTQoBaAhHQJ8WbQ5WBBl1fZQoaAZHQHFUZ9y925hoB0vMaAhHQJ8XIBo24ut1fZQoaAZHQHKP965XlsBoB0vpaAhHQJ8ZqdSVGCt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRfrwPMm99bipsddv+S0hbnACMA2luY5SKEXuTQFe5V5ihlfhFJtryKpIAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cf8d6dadabe4d8f911b1b01494b8a96f19c6322208cc92717d8f9e0eb916782
|
3 |
+
size 148263
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e27b8c8a560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e27b8c8a5f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e27b8c8a680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e27b8c8a710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e27b8c8a7a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e27b8c8a830>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e27b8c8a8c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e27b8c8a950>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e27b8c8a9e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e27b8c8aa70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e27b8c8ab00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e27b8c8ab90>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e27b8c2f780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": 1,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1699117213567724429,
|
30 |
+
"learning_rate": 0.003,
|
31 |
+
"tensorboard_log": "tensorboard-logs/ppo-LunarLander-v2-stable-reward-penalize-time/LunarLander-v2",
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHoDQz60s7Q+sE5pviCHir7WYKS88nazvAAAAAAAAAAAwHKcPU+JLbxmoE+9VY1zPYJhhz3wfhK9AACAPwAAgD96BzE+kFKRPtAxib7Sv56+XbTJvaIJAj0AAAAAAAAAANocyj38U3w+I5YOvgsSRL4JCrM64KnQvAAAAAAAAAAAgC8cPa9kNT9uWJa9Bujfvnhpsbw/OpC8AAAAAAAAAADaT7M9PbpguWv7KL3LRkM9QSi3u5edJb4AAIA/AACAP83n7z2jnDk/ErTWPKIUzr7ffMg9lURzvQAAAAAAAAAAZpyYPR49mT6mMku8e6KTvgRKDLwAx029AAAAAAAAAABmKsk7e6Kpusrwfjl8j240IFZzunRRkrgAAIA/AACAP6YXlL0V26Y/+qgvv8tmCb+0LKu6bTIQvgAAAAAAAAAA5kV+PRQol7qpgTuzrSeir2/vfTr+cMEzAACAPwAAgD/zbPI9XRGNPlEXlL2KmbC+oU37vJbTzLwAAAAAAAAAAGYejryPDmW6Sk5INwAqRTKz75Y7FRFrtgAAgD8AAIA/ZtnCPOyxm7nFP8w57UsLNVRQGDvTp/O4AACAPwAAgD8zwde8SNO2ujvw0zNJkTEwdm6COUWFrLMAAIA/AACAPxp0/D3gy8s+CXKVvnEMir7+C8m8jnsLvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIN/YnOSnuMAWyUTREBjAF0lEdAntAc8HObAnV9lChoBkdAb5cTnq3VkWgHS+loCEdAntAdSQ5my3V9lChoBkdAclAH1vl2eWgHS/BoCEdAntBaaTfR/nV9lChoBkdAcPt4Wk8A72gHS/poCEdAntJsGorFwXV9lChoBkdAcKkPu5SWJWgHS+RoCEdAntNWXTmW+3V9lChoBkdAcoJf2saKk2gHS/RoCEdAntOQ7xNIsnV9lChoBkdAazNzjFQ2uWgHS+toCEdAntPImois4nV9lChoBkdAcqHXcgyM1mgHS99oCEdAntXekk8ifXV9lChoBkdActptJnQIEGgHS9poCEdAntYXqzJIUnV9lChoBkdAcOxkjX4CZGgHS+poCEdAnta3tfG+9XV9lChoBkdAcQz6N2ki2WgHS/toCEdAntbQpvxYrHV9lChoBkdAc1BRq46OpGgHTSoBaAhHQJ7XVFRYRul1fZQoaAZHQHMKz7hvR7ZoB0vOaAhHQJ7YY7fYSQJ1fZQoaAZHQHItC6QNkOJoB0vkaAhHQJ7aCFnIyTJ1fZQoaAZHQHHpZDu0CzVoB0vzaAhHQJ7acemvW6N1fZQoaAZHQHLnYrJ8v25oB00VAWgIR0Ce2yPxQSBcdX2UKGgGR0BxDuH8CPp7aAdNJAFoCEdAntvvnW8RMHV9lChoBkdAcXBh5xBE8mgHS9toCEdAnt0LVJ+UhXV9lChoBkdAcHFUC7sfJWgHS9ZoCEdAnt07g88s+XV9lChoBkdAcYWC/GlyimgHS/5oCEdAnt2BC6YmcHV9lChoBkdAcCSp9ZzPr2gHS+doCEdAnt2VndweeXV9lChoBkfAWX9PJq7AcmgHTVoBaAhHQJ7edKcurZJ1fZQoaAZHQHIOmwA2hqVoB0vcaAhHQJ7e0ekpI+Z1fZQoaAZHQHDMH+6y0KJoB0vlaAhHQJ7fQIY3vQZ1fZQoaAZHQHG1MfA9FF5oB0vjaAhHQJ7frC/Glyl1fZQoaAZHQHKTD0UXYUZoB0vgaAhHQJ7f8Ka5PM11fZQoaAZHQHI3IZQ53khoB00DAWgIR0Ce4HD2rXDndX2UKGgGR0Bym/kmx+rmaAdLymgIR0Ce4VX9itq6dX2UKGgGR0Byfq5Zr56/aAdL3GgIR0Ce4tl18stkdX2UKGgGR0BxHjAtWdVeaAdNBgFoCEdAnuLl6/qPfnV9lChoBkdAcVsMdcSoO2gHTTsBaAhHQJ7jWofjjrB1fZQoaAZHQHA08KPXCj1oB0vWaAhHQJ7jXzVc2R91fZQoaAZHQHG2ZZB9kSVoB00PAWgIR0Ce4+LApKBedX2UKGgGR0Bx3ZNWU8msaAdL5GgIR0Ce4/KOT7l8dX2UKGgGR0Bxl94Uvf0maAdL1WgIR0Ce5J2VVxS6dX2UKGgGR0BwRomG/N7jaAdL8mgIR0Ce5KkcS5AhdX2UKGgGR0BzVBqUNayKaAdL/WgIR0Ce5N6gM+eOdX2UKGgGR0Bt/wO+ZgG9aAdL8WgIR0Ce9wueSSvDdX2UKGgGR0Bv5leyAxzraAdLzmgIR0Ce9yON5t3wdX2UKGgGR0BsyXJLdvbXaAdL5mgIR0Ce9x+BYmsvdX2UKGgGR0Bti5YA80UHaAdL5mgIR0Ce+Ei48U22dX2UKGgGR0BzUx+G47RwaAdNBQFoCEdAnvhSIxgy/XV9lChoBkdAcNHRekYXPGgHS/ZoCEdAnvmr3oLXtnV9lChoBkdAca8qB3A2ymgHS+FoCEdAnvqXAymALHV9lChoBkdAcqb/9Hc1wmgHS95oCEdAnvsGkSElFHV9lChoBkdAcE64bCJoCmgHS+loCEdAnvtVawD/2nV9lChoBkdAbfnUvPC2t2gHS/xoCEdAnvtzJIUah3V9lChoBkdAccGEf1YhdWgHS9loCEdAnvwuSB9TgnV9lChoBkdAcyVzaK1og2gHS7VoCEdAnvxgiRnvlXV9lChoBkdAc0fW56MR6GgHS/5oCEdAnvx0adc0L3V9lChoBkdAclfYjB2wFGgHS+hoCEdAnvyQjlgc+HV9lChoBkdAbo5+kP+XJGgHS95oCEdAnv2JQtSQ5nV9lChoBkdAcBl4j8k2P2gHTQcBaAhHQJ7+uzt1IRR1fZQoaAZHQHA8FG5MDfZoB0v+aAhHQJ7/+V6eGwl1fZQoaAZHQHPYhV2icoZoB0v+aAhHQJ8ABZFG5MF1fZQoaAZHQGge/mknCwdoB01VAWgIR0CfAE4oqkM1dX2UKGgGR0BxQcUSIxgzaAdL5WgIR0CfAY349HMEdX2UKGgGR0BxoCR7qptKaAdL3WgIR0CfAbngHeJpdX2UKGgGR0BxCa7BfrrxaAdNEgFoCEdAnwIG1YyO73V9lChoBkdAcS27SiM5wWgHS+BoCEdAnwIj8cdYGXV9lChoBkdAcahMbWEsa2gHS8FoCEdAnwJ8WTHKfXV9lChoBkdAb7LjQRf4RGgHS+5oCEdAnwKy1mapgnV9lChoBkdAb80XFcY64mgHS9hoCEdAnwL9rO7g9HV9lChoBkdAXXTt+kP+XWgHTegDaAhHQJ8DF1uBMBZ1fZQoaAZHQG2K8iwB5opoB0vzaAhHQJ8DepaRp111fZQoaAZHQHNDfbTMJQdoB0v3aAhHQJ8Dy1Bt1p11fZQoaAZHQHClFhXr+o9oB0vpaAhHQJ8EV43WFvh1fZQoaAZHQHD4egYgq3FoB0vzaAhHQJ8F6i0v4/N1fZQoaAZHQG2VSGahHsloB0vdaAhHQJ8GjR4QjD91fZQoaAZHQHHG1cUuctpoB0v3aAhHQJ8IBBLPD511fZQoaAZHQHEEyEHt4RpoB0vRaAhHQJ8IeqS5iEx1fZQoaAZHQHNTsoH9m6JoB0vZaAhHQJ8IkXFcY651fZQoaAZHQHJKpJ5E+gVoB00gAWgIR0CfCVewLVnVdX2UKGgGR0Bxc41aW5YpaAdL22gIR0CfCWSoOx0NdX2UKGgGR0Bt28XpGFzuaAdL5GgIR0CfCZuuA7PqdX2UKGgGR0ByD6iqQzUJaAdL1mgIR0CfCafzSThYdX2UKGgGR0BxdNhkRSP2aAdL2mgIR0CfCgFZgXuWdX2UKGgGR0BwfkotthuwaAdL5GgIR0CfCrI6bONYdX2UKGgGR0BwI0DHOryUaAdL+mgIR0CfC6gccU/OdX2UKGgGR0BtuKx9oexOaAdL4GgIR0CfC84d6sySdX2UKGgGR0BwN1KCg9NfaAdL+WgIR0CfDDbM5fdAdX2UKGgGR0Bw9unXNC7caAdL2WgIR0CfDGF/QSi/dX2UKGgGR0BwJu6K+BYnaAdL52gIR0CfDqjiXIEKdX2UKGgGR0Bx2kPBi1AraAdLxmgIR0CfD/yhzvJBdX2UKGgGR0ByGeUY8+zMaAdL2GgIR0CfEDakAPupdX2UKGgGR0ByzttO2y9maAdNCQFoCEdAnxDhjriVB3V9lChoBkfAaGHy5qdpZmgHTWEDaAhHQJ8RcgHNX5p1fZQoaAZHQHDcu/cnE2poB0vVaAhHQJ8R420iQkp1fZQoaAZHQHBGw+MZP2xoB0vyaAhHQJ8R5RCQcPx1fZQoaAZHQHFzjrNW2gFoB0vNaAhHQJ8SCIvalDZ1fZQoaAZHQHFn3XZoPCloB0vtaAhHQJ8Soa5wwTN1fZQoaAZHQHCnyl3yI55oB00IAWgIR0CfE7fpUxVRdX2UKGgGR0BtBugezUqhaAdL8mgIR0CfFGfl6qsEdX2UKGgGR0Bw7ELb5/LDaAdLyGgIR0CfFGWlMyrQdX2UKGgGR0BwtLOyE+PjaAdNKAFoCEdAnxVZqqOtGXV9lChoBkdAcM73++/QB2gHS99oCEdAnxWCdz4k/3V9lChoBkdAcEhuanaWX2gHS/poCEdAnxW7BGhEjXV9lChoBkdAcVCcCYCyQmgHTQoBaAhHQJ8WbQ5WBBl1fZQoaAZHQHFUZ9y925hoB0vMaAhHQJ8XIBo24ut1fZQoaAZHQHKP965XlsBoB0vpaAhHQJ8ZqdSVGCt1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVfwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRfrwPMm99bipsddv+S0hbnACMA2luY5SKEXuTQFe5V5ihlfhFJtryKpIAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eefdd024902b14a02bf54646a489ec2478647a43c9b25bc1d0dc49e03564b40b
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:facdbca71f02cee68c0c105486244155a1b3c3ccc6c9deec20e907afb5022d73
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (191 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.8872381658603, "std_reward": 18.601058218153543, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-04T17:22:08.006607"}
|