Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +39 -39
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +5 -6
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 294.70 +/- 21.05
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a4bf0875c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4bf0875cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a4bf0875d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4bf0875e10>", "_build": "<function ActorCriticPolicy._build at 0x7a4bf0875ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7a4bf0875f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a4bf0875fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4bf0876050>", "_predict": "<function ActorCriticPolicy._predict at 0x7a4bf08760e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4bf0876170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4bf0876200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a4bf0876290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a4bf087cb00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699469304609443894, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADqOgD4lPnI/u8WJO1T1Gr8FLuw+hHslvgAAAAAAAAAAzXmLPHwWrj8F5NE93O2svryjDz2+ZKY9AAAAAAAAAACaCR27XHW5P61RXb2MtsM+H7jAuiao8bwAAAAAAAAAALaNmD4n/WM/vYc9va5IJr9ToRw/Ae+4vQAAAAAAAAAAM4zxPEg1grpey9yzRUXMrykqcrtEfaEzAACAPwAAgD/gTmy+8AW6Ph5/cT5qE/O+JOUgvhJ8zD0AAAAAAAAAADO/3LvXnHu7mITrvSCgizyBZLU8depuvQAAgD8AAIA/ALn/vCK1tT+u7qi+DzqCvSWchLzhkMW9AAAAAAAAAADNpgm8KTw4urKIH7TRXp6vYGYuu8icnTMAAIA/AACAPzNN8TypPrs/k6nGPg2vfz4iuSI86uodPgAAAAAAAAAAQNCvPcz8/j4egj09Vk0qv0B4Gj6VQWq9AAAAAAAAAADz6Qs+uI7/u2qpSDv0jC25prxbvQAGhroAAAAAAAAAAGY23jpu2sA/wh61u9wxBL4ZOla83LArPQAAAAAAAAAAZsVIvcNlWrqu/0y3nmCZsrvTLTsDtG82AACAPwAAAABaUOO9nKVCPo6bLj4CCtK+gZBAvfpbND0AAAAAAAAAAJqpATtIp5S6mCukNkQQsjEp+ny6YOLAtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKHi6DoQnSMAWyUS+GMAXSUR0C5Pu+8brC4dX2UKGgGR0ByR3bTMJQdaAdLz2gIR0C5PvnjQzDXdX2UKGgGR0BwxDqUu+RHaAdLqGgIR0C5PyS0a6z3dX2UKGgGR0BxuJQzk6tDaAdL5GgIR0C5PzJlSS/1dX2UKGgGR0Bwu4nkT6BRaAdLrGgIR0C5P0siOeasdX2UKGgGR0Bz8NJ04iosaAdLx2gIR0C5P1wlF+d9dX2UKGgGR0BxyTaIvalDaAdLsmgIR0C5P21xwQ18dX2UKGgGR0ByGHamGdqdaAdLv2gIR0C5P3E03wTedX2UKGgGR0ByIi+dsi0OaAdLnWgIR0C5P3riyY5UdX2UKGgGR0BubWRYA80UaAdLrmgIR0C5P4xW5paidX2UKGgGR0ByJO7yxzJZaAdL1mgIR0C5P46v3ai9dX2UKGgGR0BwkgURFqi5aAdLl2gIR0C5P5LtJFspdX2UKGgGR0Bzw7AAQxvfaAdL3GgIR0C5P6CRbKRudX2UKGgGR0BzDCBkI5YHaAdL92gIR0C5P7ENnXd1dX2UKGgGR0Bw4q508vEkaAdLsWgIR0C5P7+8f3evdX2UKGgGR0BysCMo+fRNaAdLsWgIR0C5P+sq8UVSdX2UKGgGR0By1CjWTX8PaAdLvmgIR0C5QAfEbYK6dX2UKGgGR0BQ3qOxSpBHaAdLi2gIR0C5QBzfJmuldX2UKGgGR0ByiWYBvJiiaAdL3GgIR0C5Rl+QyRCAdX2UKGgGR0Bw9cH+qBEsaAdLqGgIR0C5Ro0Ttb9qdX2UKGgGR0BykDrnkkrxaAdLy2gIR0C5RrZpaibldX2UKGgGR0BwJhSqEOAiaAdLnmgIR0C5RuWIsRQKdX2UKGgGR0BwwNR64UeuaAdL6mgIR0C5Rus6JZW8dX2UKGgGR0Bvyp8UmD15aAdLlGgIR0C5RutgWrOrdX2UKGgGR0Bv+yuSwGGEaAdLrWgIR0C5RwwnhKlIdX2UKGgGR0BvWEcn3L3caAdLsGgIR0C5RwrBGhEjdX2UKGgGR0By+UwudwvQaAdL2GgIR0C5RzRxHXmOdX2UKGgGR0ByRbhegL7XaAdLnmgIR0C5RzfnGKhtdX2UKGgGR0ByvIAvL5h0aAdL2GgIR0C5R0JSm65HdX2UKGgGR0BwY/0AcT8HaAdLuWgIR0C5R1mIKtxNdX2UKGgGR0BypWmrKeTWaAdNCAFoCEdAuUeXQPZqVXV9lChoBkdAcJkjOs1baGgHS59oCEdAuUfZQuVX3nV9lChoBkdAcXJO6unuRmgHS8JoCEdAuUfd1p0wJ3V9lChoBkdAcmI2nKnvUmgHS9toCEdAuUflTBInSnV9lChoBkdAcmStnf2saWgHS7xoCEdAuUfqDSPU8XV9lChoBkdAcWYQZ4wAVGgHS55oCEdAuUgQlqrR0HV9lChoBkdAcTqzg/C66WgHS9xoCEdAuUgWnO0LMXV9lChoBkdAcHo6unuRcWgHS6xoCEdAuUgimALApXV9lChoBkdAcjjVsk6cRWgHS7JoCEdAuUgvUb1h9nV9lChoBkdAb40KF7D2rWgHS6xoCEdAuUg3o7muDHV9lChoBkdAcbhgfU4JeGgHS/FoCEdAuUhh9KEnLXV9lChoBkdAcfQ4NqgyumgHS9poCEdAuUh5H/cWTHV9lChoBkdAcyQG8Empl2gHS8xoCEdAuUiD0Yj0MHV9lChoBkdAc/dC/47A+WgHS8FoCEdAuUiJ72L5ynV9lChoBkdAc3IRB/qgRWgHS9FoCEdAuUiSUnogWHV9lChoBkdAcygbLEDQq2gHS9hoCEdAuUiSQuEmIHV9lChoBkdAcJnPsAvL5mgHS4xoCEdAuUibpA2Q4nV9lChoBkdAcY9gGr0aqGgHS7doCEdAuUigg7o0RHV9lChoBkdAcQ/wsoUi6mgHS7FoCEdAuUjTJIUah3V9lChoBkdAcbjOU+s5n2gHS8FoCEdAuUjkxrSE13V9lChoBkdAc7sid8RcvGgHS7VoCEdAuUko0tRNy3V9lChoBkdAcz0M36yjYmgHS8ZoCEdAuUkodilSCXV9lChoBkdAcbvHiFTNuGgHS+loCEdAuUkunXNC7nV9lChoBkdAcHH/YJ3PiWgHS91oCEdAuUlJjvuw5nV9lChoBkdAcOQOQQtjC2gHS8VoCEdAuUlO14Pf9HV9lChoBkdAc0pnmq5sj2gHS/hoCEdAuUmCoNutOnV9lChoBkdAcgov60pmVmgHS7BoCEdAuUmclY2bX3V9lChoBkdAcgwag2606mgHS95oCEdAuUmm/Yao/HV9lChoBkdAcW1+X7cfvGgHS8loCEdAuUmnvOQhfXV9lChoBkdAb+Ii/O+qR2gHS7JoCEdAuUmm8cuJ13V9lChoBkdAcupmoBJZn2gHS+FoCEdAuUnQhLXcxnV9lChoBkdAc1wZG8VYZGgHS/doCEdAuUnidtl7MXV9lChoBkdAb1Uef7Jnx2gHS7ZoCEdAuUn7/tICl3V9lChoBkdAc6thttQ9BGgHS/5oCEdAuUoGVRk3CXV9lChoBkdAcmoWJaaCtmgHS9hoCEdAuUojnxJ/X3V9lChoBkdAb8/DKoybhGgHS6poCEdAuUpZQQ+UyHV9lChoBkdAb0O29+PRzGgHS7xoCEdAuUpVt78ejnV9lChoBkdAcq4k1dgOSWgHS8VoCEdAuUpmG+K0lnV9lChoBkdAcWs+ERJ2+2gHS9poCEdAuUqPQtz0YnV9lChoBkdAcc40EHMUy2gHS6JoCEdAuUqOT4cm0HV9lChoBkdAU1w+6iCaqmgHS8loCEdAuUqWRLbpNnV9lChoBkdAcnQy0KJEY2gHS6BoCEdAuUqvq8lHBnV9lChoBkdAcZta+vhZQ2gHS6xoCEdAuUrDkyULUnV9lChoBkdAcSpRIBikPGgHS8doCEdAuUromkWRBHV9lChoBkdAcukDklu3t2gHS81oCEdAuUsAm4RVZXV9lChoBkdAcb2Djin5z2gHS+VoCEdAuUtbeJpFkXV9lChoBkdAcmC4eLehwmgHS91oCEdAuUtgl1KXfXV9lChoBkdAcoVtihFmWmgHS9VoCEdAuUt5ZFG5MHV9lChoBkdAcgX91EE1VGgHS41oCEdAuUuBQj2SMnV9lChoBkdAc7vDmKZUk2gHS+VoCEdAuUuHq3VkMHV9lChoBkdAc3msBhhH9WgHS9ZoCEdAuUuSkj5bhXV9lChoBkdAceAL7XQMQWgHS8JoCEdAuUuqIInjQ3V9lChoBkdAcgRtV7x/eGgHS9JoCEdAuUu2RU3n6nV9lChoBkdAb/e2phnanWgHS5RoCEdAuUu33IuGsXV9lChoBkdAcQTgL7XQMWgHS7hoCEdAuUvBe8f3e3V9lChoBkdAcpXIV/MGHGgHS69oCEdAuUvLLV4HHHV9lChoBkdAcmydP+GXX2gHS+hoCEdAuUvP6xgRb3V9lChoBkdAcFhQWepXIWgHS81oCEdAuUvXcYZVGXV9lChoBkdAccGPWhAWzmgHS5toCEdAuUvcXLvCuXV9lChoBkdAcK6nUDuBtmgHS7NoCEdAuUwRIFvAGnV9lChoBkdAcD6ZcLSeAmgHS6ZoCEdAuUxTdyksSXV9lChoBkdAcDAhllK9PGgHS5loCEdAuUxmYa5wwXV9lChoBkdAcqidAgPmP2gHS7doCEdAuUyJn003wXV9lChoBkdAcfZntfG+9WgHS7VoCEdAuUyOwPiDNHV9lChoBkdAcZ1XsPatcWgHS9VoCEdAuUyde7cwg3V9lChoBkdAcH+QMx46fmgHS61oCEdAuUzOhN/OMXV9lChoBkdAc0VUkOZssWgHS8poCEdAuUzh+jM3ZXV9lChoBkdAcnC9v0h/zGgHS99oCEdAuUzqKl54W3V9lChoBkdAcS0P+4smOWgHS7doCEdAuUztNzr/sHV9lChoBkdAchgU7CBPK2gHS8xoCEdAuUz1MdtEX3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1508, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>", "_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699386842347995288, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo0Oz012Q8/BuWUvVtiHr/7T9Q9nvuTvQAAAAAAAAAAc+7tPbfyuD7i9dy+a/HkvtEqLr7a6729AAAAAAAAAABmBkE8hbHSu+Gyozy26b88KawKvX6vuDsAAIA/AACAP+ZNwr327De6XvRsuhXPATI2gp86iGgEtAAAAAAAAIA/ALm8vNQdk7z58Ce+8WX8O2fM/D0y2SW6AACAPwAAgD9mBic8jz5luo7/q7hN7q2zBcWTORYfyjcAAIA/AACAP7NaRD26Jbw/2vvGPhEU2D0K2CQ9wxN9PgAAAAAAAAAAM7VuPe1dCD/DvIC+nuMRv5Gxhz1saDW+AAAAAAAAAABm35e84SS0uu1uXzYa5UIxQSf8OYRBgrUAAIA/AACAPzORpj6w4zw/li1KvvZxHb9LXN0+SmCEvgAAAAAAAAAAZq7yO5wCP7y2A4y+Un0Dvv8GQD2rvFc/AACAPwAAgD+ad8q84SC1ugFerbYp55GxrUT3OBapxTUAAIA/AACAP2YYqb1784K8Pfw9Pts/lb0WaiO98Nb8vgAAgD8AAIA/5ph9vR3/Hz8UlJ27ItYmv42I872uMAY9AAAAAAAAAADNqs087HnZuff6oTO7meeusu7TuuBEyLMAAIA/AACAP5qp2bpD3Re8piSIvPPVvDzeX4o9WPSavQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIRtlqagEmMAWyUS6+MAXSUR0CxfM8twrDqdX2UKGgGR0Bzb3tE5QxfaAdL1GgIR0CxfNL7TDwZdX2UKGgGR0BzhbtOVPepaAdLumgIR0CxfNioXKr8dX2UKGgGR0BwXwnfEXLvaAdLyWgIR0CxfN6ouPFOdX2UKGgGR0ByH5KpT/ACaAdL02gIR0CxfQpqEeySdX2UKGgGR0BwohzeXRgJaAdLzGgIR0CxfRsCkoF3dX2UKGgGR0Bwv55LRKHxaAdLymgIR0CxfT9at9x7dX2UKGgGR0BRj0h3aBZqaAdLeWgIR0CxfVaa1Cw9dX2UKGgGR0ByZ3dqL0jDaAdLsGgIR0CxfVZMxoIwdX2UKGgGR0Bya8RujynUaAdLu2gIR0CxfVmig00ndX2UKGgGR0BxZ8CcPOIJaAdLyGgIR0CxfV2vbGm2dX2UKGgGR0Bx9gZQ53kgaAdLuWgIR0CxfWblvIfbdX2UKGgGR0B0B72RJVbSaAdLt2gIR0CxfXkbPyCndX2UKGgGR0BxNqZa3ZwoaAdLsGgIR0CxfZaKUFB6dX2UKGgGR0BxHBOj7ALzaAdLs2gIR0CxfZhOgxrSdX2UKGgGR0BwchYISlFdaAdLz2gIR0CxfabwKBuodX2UKGgGR0Bv4o0CRwIdaAdLvmgIR0CxfaxIjGDMdX2UKGgGR0BzogKYzBRAaAdLvGgIR0Cxfa62SdOJdX2UKGgGR0Bxb/O3UhFFaAdLu2gIR0CxfbPfoA4odX2UKGgGR0Bzm8APuognaAdL4mgIR0CxfebfpD/mdX2UKGgGR0B0X5nf2saLaAdL42gIR0CxhFwqiGnGdX2UKGgGR0Bw/pn7HhjwaAdL2GgIR0CxhF3Kr7wbdX2UKGgGR0ByiXkBCD28aAdLz2gIR0CxhHj59E1EdX2UKGgGR0B0bNkiD/VBaAdLzmgIR0CxhI7W/ag3dX2UKGgGR0Bxzo9C/oJRaAdL02gIR0CxhJRISUTtdX2UKGgGR0Bx25QoCuEFaAdLw2gIR0CxhJQjQiRodX2UKGgGR0BzTCJcgQpXaAdL1GgIR0CxhJjxgAp8dX2UKGgGR0BwLzHGS6lMaAdLoGgIR0CxhKn2ZiNLdX2UKGgGR0BxmjeJpFkQaAdLxmgIR0CxhKmRRuTBdX2UKGgGR0Bx+Zq20AtGaAdL8WgIR0CxhMAy6+WXdX2UKGgGR0Bzoyce8wpOaAdLwWgIR0CxhMSpFTegdX2UKGgGR0BxomYYzi0faAdL1GgIR0CxhN2G7BfsdX2UKGgGR0Byd34ZdfLLaAdLxGgIR0CxhOGh7E5ydX2UKGgGR0Bzsog2ZRbbaAdL0GgIR0CxhOvKyOaOdX2UKGgGR0BxuDItDlYEaAdLzmgIR0CxhSpy6tkndX2UKGgGR0ByGKBoVVPvaAdLsGgIR0CxhTZrLyMDdX2UKGgGR0BvQCTINmUXaAdLvmgIR0CxhUd3KSxJdX2UKGgGR0ByVOIZZSvUaAdLx2gIR0CxhW+45Lh8dX2UKGgGR0Bw8Hio86mwaAdLumgIR0CxhXrqptJndX2UKGgGR0Bwlu34Kx9oaAdLvmgIR0CxhYU9t/FzdX2UKGgGR0BycVc5bQkYaAdLzWgIR0CxhZVWfbsXdX2UKGgGR0BxcBnOB19waAdLpGgIR0CxhZVvddmhdX2UKGgGR0BwypHFxXGPaAdLumgIR0CxhayCjDbbdX2UKGgGR0B0Q5ZU1hsqaAdLzWgIR0CxhayKNyYHdX2UKGgGR0Bt7lLJ0W/KaAdNaQFoCEdAsYW2jnFHa3V9lChoBkdAc8n3XZoPCmgHS+loCEdAsYXN8BuGbnV9lChoBkdAccUcIqsls2gHS8RoCEdAsYXQ1wYLs3V9lChoBkdAc9kuVopQUGgHTREBaAhHQLGF4BKcurZ1fZQoaAZHQHN1MINVinZoB0vWaAhHQLGF6pgkTpR1fZQoaAZHQHMA9eIEbHZoB0veaAhHQLGF/TVDrqt1fZQoaAZHQHKi2PDHfdhoB0u4aAhHQLGGFR1X/5t1fZQoaAZHQHNHjG5tm+VoB0vXaAhHQLGGLqm0mdB1fZQoaAZHQHGtOOfdyktoB0uoaAhHQLGGOxYaHbh1fZQoaAZHQG+ADn3cpLFoB0vWaAhHQLGGSR1oxpN1fZQoaAZHQHInKsMiKSBoB0uwaAhHQLGGY/NZ/1B1fZQoaAZHQHLnQHmig01oB0vHaAhHQLGGaxjriVB1fZQoaAZHQHKiCzLOiWVoB0vJaAhHQLGGduWKMvR1fZQoaAZHQHE/kpEx7AtoB0vAaAhHQLGGeKgIyCZ1fZQoaAZHQHJvG8Empl1oB0uxaAhHQLGGfBDohZB1fZQoaAZHQHNwX+MqBmRoB0vJaAhHQLGGmCoS+QF1fZQoaAZHQHB6y5iExqRoB0u0aAhHQLGGoyYXwb51fZQoaAZHQHG/fQ0GeMBoB0vOaAhHQLGGqxu89Oh1fZQoaAZHQHDwibhFVktoB0vFaAhHQLGGvD+irT91fZQoaAZHQHNYUp/gBLhoB0vFaAhHQLGGzkep4r11fZQoaAZHQHKn+3MINVloB0vSaAhHQLGG/X7Lt/p1fZQoaAZHQHHt3uuzQeFoB0vlaAhHQLGG/xXXAdp1fZQoaAZHQHPSkNFz+3poB0vSaAhHQLGHGn0TURZ1fZQoaAZHQHO9i0Sh8IBoB0vFaAhHQLGHIr56+nJ1fZQoaAZHQHDW05hjOLRoB0u9aAhHQLGHNeyzHCJ1fZQoaAZHQHD80daMaS9oB0vAaAhHQLGHVByCFsZ1fZQoaAZHQHGpkqpcX3xoB0u3aAhHQLGHWbqhUR51fZQoaAZHQHMzH6Mzdk9oB0vGaAhHQLGHYmaH9FZ1fZQoaAZHQG+zWkSElE9oB0vYaAhHQLGHiy5qdpZ1fZQoaAZHQHJp45T6zmhoB0vBaAhHQLGHjFqzqr11fZQoaAZHQHNOZEpiI+JoB00RAWgIR0Cxh48TBZZCdX2UKGgGR0BzU4ISlFc6aAdL3WgIR0Cxh42C/XXidX2UKGgGR0BxgxXcQAdXaAdLtmgIR0Cxh4/6KtPpdX2UKGgGR0BwzuHFglWwaAdLwWgIR0Cxh6tLteD4dX2UKGgGR0ByLAsqaw2VaAdLwGgIR0Cxh7vZ/Tb4dX2UKGgGR0BxrPTPSlWPaAdL+GgIR0Cxh9W9pRGddX2UKGgGR0ByK9/WlMyraAdLvGgIR0Cxh+O3+dbxdX2UKGgGR0ByQigUUO/daAdLvGgIR0CxiAfUjLSvdX2UKGgGR0Bx7C8IzFdcaAdLx2gIR0CxiAuRDCxedX2UKGgGR0B0GsB/7SApaAdL6WgIR0CxiBagqVhTdX2UKGgGR0BxgHtmcvugaAdLzWgIR0CxiEzVUdaMdX2UKGgGR0Bw6pYNiH6/aAdLxWgIR0CxiE7+1jRVdX2UKGgGR0BzFkk5ZKWcaAdL6WgIR0CxiFFocrAhdX2UKGgGR0BxGP029+PSaAdLzWgIR0CxiFa20AtGdX2UKGgGR0ByZSW2PT5PaAdLqmgIR0CxiFp5Z8rqdX2UKGgGR0BuP+0E5hjOaAdLu2gIR0CxiGz0cwQEdX2UKGgGR0ByzfDHfdhzaAdLxmgIR0CxiH+RLbpNdX2UKGgGR0B0QxFDv3JxaAdL1WgIR0CxiJOBxxT9dX2UKGgGR0BzXBhttQ9BaAdLxWgIR0CxiJ4u5BkadX2UKGgGR0BznZZzPrv9aAdL52gIR0CxiKjDKoycdX2UKGgGR0Bzdit5le4TaAdLxGgIR0CxiK+IRAbAdX2UKGgGR0ByRrO4XoC/aAdLpGgIR0CxiNc3dbgTdX2UKGgGR0BzXtoUSIxhaAdL1WgIR0CxiNnL3bmEdX2UKGgGR0BxFOfPHDJmaAdLumgIR0CxiOwDFId3dX2UKGgGR0ByGS/M4cWCaAdL3mgIR0CxiPKQ3gk1dX2UKGgGR0BzmL9YOlO5aAdL4WgIR0CxiSfG2kSFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8zMjY2MTU5MzYyLnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc31b973dac2b653aa1a9f374712e73eac9ceea75becc4849dd82639f8b77c05
|
3 |
+
size 147743
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,20 +41,35 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -77,23 +92,8 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps": 1024,
|
81 |
-
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.01,
|
84 |
-
"vf_coef": 0.5,
|
85 |
-
"max_grad_norm": 0.5,
|
86 |
-
"batch_size": 64,
|
87 |
-
"n_epochs": 4,
|
88 |
-
"clip_range": {
|
89 |
-
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
-
},
|
92 |
-
"clip_range_vf": null,
|
93 |
-
"normalize_advantage": true,
|
94 |
-
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 5013504,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1699386842347995288,
|
30 |
+
"learning_rate": 0.0,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo0Oz012Q8/BuWUvVtiHr/7T9Q9nvuTvQAAAAAAAAAAc+7tPbfyuD7i9dy+a/HkvtEqLr7a6729AAAAAAAAAABmBkE8hbHSu+Gyozy26b88KawKvX6vuDsAAIA/AACAP+ZNwr327De6XvRsuhXPATI2gp86iGgEtAAAAAAAAIA/ALm8vNQdk7z58Ce+8WX8O2fM/D0y2SW6AACAPwAAgD9mBic8jz5luo7/q7hN7q2zBcWTORYfyjcAAIA/AACAP7NaRD26Jbw/2vvGPhEU2D0K2CQ9wxN9PgAAAAAAAAAAM7VuPe1dCD/DvIC+nuMRv5Gxhz1saDW+AAAAAAAAAABm35e84SS0uu1uXzYa5UIxQSf8OYRBgrUAAIA/AACAPzORpj6w4zw/li1KvvZxHb9LXN0+SmCEvgAAAAAAAAAAZq7yO5wCP7y2A4y+Un0Dvv8GQD2rvFc/AACAPwAAgD+ad8q84SC1ugFerbYp55GxrUT3OBapxTUAAIA/AACAP2YYqb1784K8Pfw9Pts/lb0WaiO98Nb8vgAAgD8AAIA/5ph9vR3/Hz8UlJ27ItYmv42I872uMAY9AAAAAAAAAADNqs087HnZuff6oTO7meeusu7TuuBEyLMAAIA/AACAP5qp2bpD3Re8piSIvPPVvDzeX4o9WPSavQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIRtlqagEmMAWyUS6+MAXSUR0CxfM8twrDqdX2UKGgGR0Bzb3tE5QxfaAdL1GgIR0CxfNL7TDwZdX2UKGgGR0BzhbtOVPepaAdLumgIR0CxfNioXKr8dX2UKGgGR0BwXwnfEXLvaAdLyWgIR0CxfN6ouPFOdX2UKGgGR0ByH5KpT/ACaAdL02gIR0CxfQpqEeySdX2UKGgGR0BwohzeXRgJaAdLzGgIR0CxfRsCkoF3dX2UKGgGR0Bwv55LRKHxaAdLymgIR0CxfT9at9x7dX2UKGgGR0BRj0h3aBZqaAdLeWgIR0CxfVaa1Cw9dX2UKGgGR0ByZ3dqL0jDaAdLsGgIR0CxfVZMxoIwdX2UKGgGR0Bya8RujynUaAdLu2gIR0CxfVmig00ndX2UKGgGR0BxZ8CcPOIJaAdLyGgIR0CxfV2vbGm2dX2UKGgGR0Bx9gZQ53kgaAdLuWgIR0CxfWblvIfbdX2UKGgGR0B0B72RJVbSaAdLt2gIR0CxfXkbPyCndX2UKGgGR0BxNqZa3ZwoaAdLsGgIR0CxfZaKUFB6dX2UKGgGR0BxHBOj7ALzaAdLs2gIR0CxfZhOgxrSdX2UKGgGR0BwchYISlFdaAdLz2gIR0CxfabwKBuodX2UKGgGR0Bv4o0CRwIdaAdLvmgIR0CxfaxIjGDMdX2UKGgGR0BzogKYzBRAaAdLvGgIR0Cxfa62SdOJdX2UKGgGR0Bxb/O3UhFFaAdLu2gIR0CxfbPfoA4odX2UKGgGR0Bzm8APuognaAdL4mgIR0CxfebfpD/mdX2UKGgGR0B0X5nf2saLaAdL42gIR0CxhFwqiGnGdX2UKGgGR0Bw/pn7HhjwaAdL2GgIR0CxhF3Kr7wbdX2UKGgGR0ByiXkBCD28aAdLz2gIR0CxhHj59E1EdX2UKGgGR0B0bNkiD/VBaAdLzmgIR0CxhI7W/ag3dX2UKGgGR0Bxzo9C/oJRaAdL02gIR0CxhJRISUTtdX2UKGgGR0Bx25QoCuEFaAdLw2gIR0CxhJQjQiRodX2UKGgGR0BzTCJcgQpXaAdL1GgIR0CxhJjxgAp8dX2UKGgGR0BwLzHGS6lMaAdLoGgIR0CxhKn2ZiNLdX2UKGgGR0BxmjeJpFkQaAdLxmgIR0CxhKmRRuTBdX2UKGgGR0Bx+Zq20AtGaAdL8WgIR0CxhMAy6+WXdX2UKGgGR0Bzoyce8wpOaAdLwWgIR0CxhMSpFTegdX2UKGgGR0BxomYYzi0faAdL1GgIR0CxhN2G7BfsdX2UKGgGR0Byd34ZdfLLaAdLxGgIR0CxhOGh7E5ydX2UKGgGR0Bzsog2ZRbbaAdL0GgIR0CxhOvKyOaOdX2UKGgGR0BxuDItDlYEaAdLzmgIR0CxhSpy6tkndX2UKGgGR0ByGKBoVVPvaAdLsGgIR0CxhTZrLyMDdX2UKGgGR0BvQCTINmUXaAdLvmgIR0CxhUd3KSxJdX2UKGgGR0ByVOIZZSvUaAdLx2gIR0CxhW+45Lh8dX2UKGgGR0Bw8Hio86mwaAdLumgIR0CxhXrqptJndX2UKGgGR0Bwlu34Kx9oaAdLvmgIR0CxhYU9t/FzdX2UKGgGR0BycVc5bQkYaAdLzWgIR0CxhZVWfbsXdX2UKGgGR0BxcBnOB19waAdLpGgIR0CxhZVvddmhdX2UKGgGR0BwypHFxXGPaAdLumgIR0CxhayCjDbbdX2UKGgGR0B0Q5ZU1hsqaAdLzWgIR0CxhayKNyYHdX2UKGgGR0Bt7lLJ0W/KaAdNaQFoCEdAsYW2jnFHa3V9lChoBkdAc8n3XZoPCmgHS+loCEdAsYXN8BuGbnV9lChoBkdAccUcIqsls2gHS8RoCEdAsYXQ1wYLs3V9lChoBkdAc9kuVopQUGgHTREBaAhHQLGF4BKcurZ1fZQoaAZHQHN1MINVinZoB0vWaAhHQLGF6pgkTpR1fZQoaAZHQHMA9eIEbHZoB0veaAhHQLGF/TVDrqt1fZQoaAZHQHKi2PDHfdhoB0u4aAhHQLGGFR1X/5t1fZQoaAZHQHNHjG5tm+VoB0vXaAhHQLGGLqm0mdB1fZQoaAZHQHGtOOfdyktoB0uoaAhHQLGGOxYaHbh1fZQoaAZHQG+ADn3cpLFoB0vWaAhHQLGGSR1oxpN1fZQoaAZHQHInKsMiKSBoB0uwaAhHQLGGY/NZ/1B1fZQoaAZHQHLnQHmig01oB0vHaAhHQLGGaxjriVB1fZQoaAZHQHKiCzLOiWVoB0vJaAhHQLGGduWKMvR1fZQoaAZHQHE/kpEx7AtoB0vAaAhHQLGGeKgIyCZ1fZQoaAZHQHJvG8Empl1oB0uxaAhHQLGGfBDohZB1fZQoaAZHQHNwX+MqBmRoB0vJaAhHQLGGmCoS+QF1fZQoaAZHQHB6y5iExqRoB0u0aAhHQLGGoyYXwb51fZQoaAZHQHG/fQ0GeMBoB0vOaAhHQLGGqxu89Oh1fZQoaAZHQHDwibhFVktoB0vFaAhHQLGGvD+irT91fZQoaAZHQHNYUp/gBLhoB0vFaAhHQLGGzkep4r11fZQoaAZHQHKn+3MINVloB0vSaAhHQLGG/X7Lt/p1fZQoaAZHQHHt3uuzQeFoB0vlaAhHQLGG/xXXAdp1fZQoaAZHQHPSkNFz+3poB0vSaAhHQLGHGn0TURZ1fZQoaAZHQHO9i0Sh8IBoB0vFaAhHQLGHIr56+nJ1fZQoaAZHQHDW05hjOLRoB0u9aAhHQLGHNeyzHCJ1fZQoaAZHQHD80daMaS9oB0vAaAhHQLGHVByCFsZ1fZQoaAZHQHGpkqpcX3xoB0u3aAhHQLGHWbqhUR51fZQoaAZHQHMzH6Mzdk9oB0vGaAhHQLGHYmaH9FZ1fZQoaAZHQG+zWkSElE9oB0vYaAhHQLGHiy5qdpZ1fZQoaAZHQHJp45T6zmhoB0vBaAhHQLGHjFqzqr11fZQoaAZHQHNOZEpiI+JoB00RAWgIR0Cxh48TBZZCdX2UKGgGR0BzU4ISlFc6aAdL3WgIR0Cxh42C/XXidX2UKGgGR0BxgxXcQAdXaAdLtmgIR0Cxh4/6KtPpdX2UKGgGR0BwzuHFglWwaAdLwWgIR0Cxh6tLteD4dX2UKGgGR0ByLAsqaw2VaAdLwGgIR0Cxh7vZ/Tb4dX2UKGgGR0BxrPTPSlWPaAdL+GgIR0Cxh9W9pRGddX2UKGgGR0ByK9/WlMyraAdLvGgIR0Cxh+O3+dbxdX2UKGgGR0ByQigUUO/daAdLvGgIR0CxiAfUjLSvdX2UKGgGR0Bx7C8IzFdcaAdLx2gIR0CxiAuRDCxedX2UKGgGR0B0GsB/7SApaAdL6WgIR0CxiBagqVhTdX2UKGgGR0BxgHtmcvugaAdLzWgIR0CxiEzVUdaMdX2UKGgGR0Bw6pYNiH6/aAdLxWgIR0CxiE7+1jRVdX2UKGgGR0BzFkk5ZKWcaAdL6WgIR0CxiFFocrAhdX2UKGgGR0BxGP029+PSaAdLzWgIR0CxiFa20AtGdX2UKGgGR0ByZSW2PT5PaAdLqmgIR0CxiFp5Z8rqdX2UKGgGR0BuP+0E5hjOaAdLu2gIR0CxiGz0cwQEdX2UKGgGR0ByzfDHfdhzaAdLxmgIR0CxiH+RLbpNdX2UKGgGR0B0QxFDv3JxaAdL1WgIR0CxiJOBxxT9dX2UKGgGR0BzXBhttQ9BaAdLxWgIR0CxiJ4u5BkadX2UKGgGR0BznZZzPrv9aAdL52gIR0CxiKjDKoycdX2UKGgGR0Bzdit5le4TaAdLxGgIR0CxiK+IRAbAdX2UKGgGR0ByRrO4XoC/aAdLpGgIR0CxiNc3dbgTdX2UKGgGR0BzXtoUSIxhaAdL1WgIR0CxiNnL3bmEdX2UKGgGR0BxFOfPHDJmaAdLumgIR0CxiOwDFId3dX2UKGgGR0ByGS/M4cWCaAdL3mgIR0CxiPKQ3gk1dX2UKGgGR0BzmL9YOlO5aAdL4WgIR0CxiSfG2kSFdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 1472,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8zMjY2MTU5MzYyLnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"dtype": "float32",
|
74 |
"bounded_below": "[ True True True True True True True True]",
|
75 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01c6c61e4582935a68f90d001946e1a4e706a12d58cddec5f4bce5e727d2b0c3
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df51e44d066525190fbcc51e01c7f25eb0814ab712f8e11f25872fbbf08a0d05
|
3 |
+
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
- OS: Linux-5.15.
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.1.0+
|
5 |
-
- GPU Enabled:
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
- Gymnasium: 0.28.1
|
9 |
-
- OpenAI Gym: 0.25.2
|
|
|
1 |
+
- OS: Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.1
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
- Gymnasium: 0.28.1
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 294.69690077237556, "std_reward": 21.046088291846075, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-09T12:16:11.241642"}
|