gabruarya commited on
Commit
8440132
·
1 Parent(s): 1505f04

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 285.30 +/- 19.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>", "_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 7012352, "_total_timesteps": 7000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699535408138996165, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqUYz389yc9+Qg/vllD2L7uYWG+dHaJPQAAAAAAAAAAzfxIPONHuj/qfz0+siaGPst5Hzw9ZNQ9AAAAAAAAAADaAcU9GSxRP9azhbuBAg+/LJF8PoVlzbsAAAAAAAAAAEBNob0mEq0/RVYZv8M5ur4+AxC9VpGNvgAAAAAAAAAAzZEnvUitrD42r7g98S/8vpCYDT3bBeQ9AAAAAAAAAADmpSa9rjmzukUG77TeMCewu7vcuTqrSjQAAIA/AACAP02H3T0uDLc/DvWTPumk6b7GGIo+wUoCPgAAAAAAAAAAAP0NPf/94z7I+ky+FSsNv+2LB72MMhq+AAAAAAAAAADQ/K++JD0YvcCQrTwuzGu3iLsjPkyPJTwAAAAAAAAAAKBtGT6frXs/dnywPR8XG78e2sc+lk4OvQAAAAAAAAAAZnQ3vI/+WbplqgQ1jyj3LybukjsTy3O0AACAPwAAgD9mZi67e0aWuiUljbcCbpOyS2DRuhFqozYAAIA/AACAP403yL32rHe66U4+Ol7NMLbXPJk6AvdduQAAAAAAAIA/M3u5O2Yidj/71Gm7eTUnv0si+zumRNk9AAAAAAAAAADNadC83FYavL62j72d3cU8nzeEPVtTor0AAIA/AACAPwAgGTwfGGY/ovAJvdG5Lr9Icxo9V94lvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0017645714285714487, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLaYYR/ViGMAWyUS9CMAXSUR0DgLKiscQyzdX2UKGgGR0ByDyRYA80UaAdLsGgIR0DgLLbCXyAhdX2UKGgGR0BxSQZDRc/uaAdL22gIR0DgLLnDYRNAdX2UKGgGR0BwBE0xdpqRaAdLv2gIR0DgLMEPz4DcdX2UKGgGR0BztmCxu89PaAdLymgIR0DgLMghmoR7dX2UKGgGR0Bw/JGTcIqtaAdLyGgIR0DgLMlWtEG8dX2UKGgGR0Bw64sGxD9gaAdLu2gIR0DgLM+iL2pRdX2UKGgGR0BxnnftQbdaaAdLq2gIR0DgLNHGbTc7dX2UKGgGR0BwRKF36hxpaAdLwWgIR0DgLNJdM0xedX2UKGgGR0ByoCpS75EdaAdLuWgIR0DgLNJNeMQ3dX2UKGgGR0BzC5DfFaStaAdLw2gIR0DgLNU8g6ltdX2UKGgGR0Bycen5zo2XaAdLvWgIR0DgLOFR6WxAdX2UKGgGR0BwVCa9bor4aAdLqWgIR0DgLOpu3trsdX2UKGgGR0ByfC9cry2AaAdL2WgIR0DgLPsn8baRdX2UKGgGR0Bt4384xUNsaAdLv2gIR0DgLP3AD7qIdX2UKGgGR0BziJUhmoR7aAdLymgIR0DgLcXiUgSwdX2UKGgGR0BxNB6Rhc7haAdL5WgIR0DgLdA2/i5vdX2UKGgGR0BxwxAprk8zaAdLwGgIR0DgLdN3ztkXdX2UKGgGR0Bzf4MMI/qxaAdL0WgIR0DgLd6n1nM/dX2UKGgGR0Bw30uBczInaAdLrmgIR0DgLeUeQuEmdX2UKGgGR0Bx38f3evZAaAdLw2gIR0DgLec2kSEldX2UKGgGR0Byr3HDJlreaAdL4mgIR0DgLe6jeKsNdX2UKGgGR0BxpJ2Qnx8VaAdL0GgIR0DgLe6nLJS0dX2UKGgGR0BytdWZJCjUaAdLvmgIR0DgLe995yEMdX2UKGgGR0BxVpjslb/waAdLumgIR0DgLfFd0JWvdX2UKGgGR0Bxc8l/pdKNaAdLxWgIR0DgLfH4QjD9dX2UKGgGR0BzbiOo5xR3aAdLxWgIR0DgLfJFH8TBdX2UKGgGR0ByRncrRSgoaAdLrmgIR0DgLfc5R0lrdX2UKGgGR0By7eZqmCRPaAdL32gIR0DgLhTeHi3odX2UKGgGR0ByDQG/vfCRaAdLw2gIR0DgLhv8ZUDMdX2UKGgGR0By49qJuVHGaAdLsmgIR0DgLh5Wf9P2dX2UKGgGR0Bwe5LvkRzzaAdL02gIR0DgLh/vOyE+dX2UKGgGR0By7s+Y+jdpaAdLz2gIR0DgLiBZAY51dX2UKGgGR0BxQaH0se4kaAdLr2gIR0DgLiBYRNAUdX2UKGgGR0BwkZcjZ+QVaAdLumgIR0DgLi75VOsUdX2UKGgGR0Bu5UF0PpY+aAdLsGgIR0DgLjmYgJTmdX2UKGgGR0Bv6M85jpcHaAdLtmgIR0DgLj1upjtpdX2UKGgGR0BzWhoFmnO0aAdLz2gIR0DgLkC/N7jUdX2UKGgGR0By81bTtsvaaAdLwmgIR0DgLkHoxpL3dX2UKGgGR0Bwuw2ETQE7aAdL2mgIR0DgLkO3m3fAdX2UKGgGR0Bup2OGTLW7aAdLyGgIR0DgLke4DLbIdX2UKGgGR0ByDPfAKv3baAdL2GgIR0DgLk2QRwqBdX2UKGgGR0BxprZQHiWFaAdLzmgIR0DgLlExZdOZdX2UKGgGR0ByI/RWtEG8aAdL5GgIR0DgLlM9IwuedX2UKGgGR0BRTYVM23rlaAdLnmgIR0DgLmMs5GSZdX2UKGgGR0BxMzuBtk4FaAdLu2gIR0DgLm9+1jRVdX2UKGgGR0BxDA8FINExaAdLzGgIR0DgLnD2wFC+dX2UKGgGR0BwsSjKxLTQaAdLuWgIR0DgLnKIkZ75dX2UKGgGR0ByYu1y/9HdaAdLwWgIR0DgLnavvjOtdX2UKGgGR0BxEE9W6shgaAdLtmgIR0DgLoHA44p+dX2UKGgGR0BzihAfMfRvaAdL2GgIR0DgLoG7ulXSdX2UKGgGR0BzlZfdAPd3aAdLtWgIR0DgLovy3kPudX2UKGgGR0BvWR1HOKO1aAdLw2gIR0DgLpdWV/tqdX2UKGgGR0BuuBxvNu+AaAdLw2gIR0DgLprQ8fV7dX2UKGgGR0Bx0Gv8qFyraAdLyWgIR0DgLp8DXe3ydX2UKGgGR0BxYJydWhh6aAdLyWgIR0DgLqD/VAiWdX2UKGgGR0Bzvfggow23aAdLsmgIR0DgLqG2AoXsdX2UKGgGR0BzrNg5R0lraAdLy2gIR0DgLqXwG4ZudX2UKGgGR0By6YAYHgP3aAdLv2gIR0DgLqq/etSydX2UKGgGR0B0m4n5SFXaaAdLxmgIR0DgLq/WilBQdX2UKGgGR0Byw4b5uZTiaAdL1mgIR0DgLsjvBrN4dX2UKGgGR0By2Oc2BJ7LaAdLxGgIR0DgLs2rjo6kdX2UKGgGR0Byle5I6KceaAdL22gIR0DgLthuqFRHdX2UKGgGR0BzVCOFQEZBaAdL1WgIR0DgLths+FDfdX2UKGgGR0ByIWqNp/PPaAdLzmgIR0DgLtmQwsXjdX2UKGgGR0BxmvRWtEG8aAdLwGgIR0DgLt2y57PZdX2UKGgGR0BAED3/Pw/gaAdLh2gIR0DgLuDkMkQgdX2UKGgGR0BzDfAsTWXkaAdL2GgIR0DgLuinc+JQdX2UKGgGR0By5WMm4RVZaAdLzWgIR0DgLu2AKfFrdX2UKGgGR0BvDRrLyMDPaAdLumgIR0DgLu781n/UdX2UKGgGR0B0LUoBq9GraAdLu2gIR0DgLvJ07r9mdX2UKGgGR0Bxa3FyaNMoaAdLsGgIR0DgLvPb48EFdX2UKGgGR0BzlDFYMfA9aAdLx2gIR0DgLvqshgVodX2UKGgGR0ByjU3EQ5FPaAdLxmgIR0DgLwDjlxOtdX2UKGgGR0BygD0aqCHzaAdLxWgIR0DgLwqX1J18dX2UKGgGR0BzJ59G7SRbaAdL1GgIR0DgLwv2OhkBdX2UKGgGR0Bx911yNn5BaAdLpmgIR0DgLxPkJ8fFdX2UKGgGR0Bxve2uxKQJaAdLsGgIR0DgLxx1BdD6dX2UKGgGR0BxAUjxCpm3aAdLqmgIR0DgLyMrxRVIdX2UKGgGR0Bxoo7OmixnaAdLtmgIR0DgLy58OTaCdX2UKGgGR0BwIXj6vaDgaAdLw2gIR0DgLzCT+vQodX2UKGgGR0ByyISsbNr1aAdLumgIR0DgLzQCHRCydX2UKGgGR0A0pPWQOnVHaAdLX2gIR0DgLziGIsRQdX2UKGgGR0ByrX9Nvfj0aAdL22gIR0DgLzsKsuFpdX2UKGgGR0Bx04qVhTfjaAdLx2gIR0DgL0Ftm+TNdX2UKGgGR0ByRslQdjoZaAdLqGgIR0DgL0aAPuohdX2UKGgGR0BzH0/cFhXsaAdLwWgIR0DgL0hnTy8SdX2UKGgGR0Bv5bHEMspYaAdLzWgIR0DgL0i6NEPUdX2UKGgGR0Bx7K+IuXeFaAdLw2gIR0DgL0p4iX6ZdX2UKGgGR0BzuW7iADq4aAdL0GgIR0DgL0rsfJV9dX2UKGgGR0BzIwiyIHkcaAdLsmgIR0DgL1AJTl1bdX2UKGgGR0B0UhY4hllLaAdLzmgIR0DgL2YuSOindX2UKGgGR0BxodcC5mROaAdLzGgIR0DgL2/N5+pgdX2UKGgGR0By2w6ZH/cWaAdL1WgIR0DgL36I0IkadX2UKGgGR0BxxqstCiRGaAdLqWgIR0DgL4DEcbR4dX2UKGgGR0BvnUEvCdjHaAdL1mgIR0DgL4Z544ZNdX2UKGgGR0BwKMDaGpMpaAdLrmgIR0DgL4iSzw+ddX2UKGgGR0BxwlrULDyfaAdLwWgIR0DgL4mE12q2dX2UKGgGR0BxfOrHU+cIaAdLr2gIR0DgL5KDOkckdX2UKGgGR0BzG64Wk8A8aAdLxGgIR0DgL5UvWYnfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5640, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8xODkxMDkyNDI0LnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce8fcaea81c404e2e04ab380cd180ca967f49e025516beef419306d58b1fbf01
3
+ size 147739
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 7012352,
25
+ "_total_timesteps": 7000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1699535408138996165,
30
+ "learning_rate": 0.0,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqUYz389yc9+Qg/vllD2L7uYWG+dHaJPQAAAAAAAAAAzfxIPONHuj/qfz0+siaGPst5Hzw9ZNQ9AAAAAAAAAADaAcU9GSxRP9azhbuBAg+/LJF8PoVlzbsAAAAAAAAAAEBNob0mEq0/RVYZv8M5ur4+AxC9VpGNvgAAAAAAAAAAzZEnvUitrD42r7g98S/8vpCYDT3bBeQ9AAAAAAAAAADmpSa9rjmzukUG77TeMCewu7vcuTqrSjQAAIA/AACAP02H3T0uDLc/DvWTPumk6b7GGIo+wUoCPgAAAAAAAAAAAP0NPf/94z7I+ky+FSsNv+2LB72MMhq+AAAAAAAAAADQ/K++JD0YvcCQrTwuzGu3iLsjPkyPJTwAAAAAAAAAAKBtGT6frXs/dnywPR8XG78e2sc+lk4OvQAAAAAAAAAAZnQ3vI/+WbplqgQ1jyj3LybukjsTy3O0AACAPwAAgD9mZi67e0aWuiUljbcCbpOyS2DRuhFqozYAAIA/AACAP403yL32rHe66U4+Ol7NMLbXPJk6AvdduQAAAAAAAIA/M3u5O2Yidj/71Gm7eTUnv0si+zumRNk9AAAAAAAAAADNadC83FYavL62j72d3cU8nzeEPVtTor0AAIA/AACAPwAgGTwfGGY/ovAJvdG5Lr9Icxo9V94lvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0017645714285714487,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLaYYR/ViGMAWyUS9CMAXSUR0DgLKiscQyzdX2UKGgGR0ByDyRYA80UaAdLsGgIR0DgLLbCXyAhdX2UKGgGR0BxSQZDRc/uaAdL22gIR0DgLLnDYRNAdX2UKGgGR0BwBE0xdpqRaAdLv2gIR0DgLMEPz4DcdX2UKGgGR0BztmCxu89PaAdLymgIR0DgLMghmoR7dX2UKGgGR0Bw/JGTcIqtaAdLyGgIR0DgLMlWtEG8dX2UKGgGR0Bw64sGxD9gaAdLu2gIR0DgLM+iL2pRdX2UKGgGR0BxnnftQbdaaAdLq2gIR0DgLNHGbTc7dX2UKGgGR0BwRKF36hxpaAdLwWgIR0DgLNJdM0xedX2UKGgGR0ByoCpS75EdaAdLuWgIR0DgLNJNeMQ3dX2UKGgGR0BzC5DfFaStaAdLw2gIR0DgLNU8g6ltdX2UKGgGR0Bycen5zo2XaAdLvWgIR0DgLOFR6WxAdX2UKGgGR0BwVCa9bor4aAdLqWgIR0DgLOpu3trsdX2UKGgGR0ByfC9cry2AaAdL2WgIR0DgLPsn8baRdX2UKGgGR0Bt4384xUNsaAdLv2gIR0DgLP3AD7qIdX2UKGgGR0BziJUhmoR7aAdLymgIR0DgLcXiUgSwdX2UKGgGR0BxNB6Rhc7haAdL5WgIR0DgLdA2/i5vdX2UKGgGR0BxwxAprk8zaAdLwGgIR0DgLdN3ztkXdX2UKGgGR0Bzf4MMI/qxaAdL0WgIR0DgLd6n1nM/dX2UKGgGR0Bw30uBczInaAdLrmgIR0DgLeUeQuEmdX2UKGgGR0Bx38f3evZAaAdLw2gIR0DgLec2kSEldX2UKGgGR0Byr3HDJlreaAdL4mgIR0DgLe6jeKsNdX2UKGgGR0BxpJ2Qnx8VaAdL0GgIR0DgLe6nLJS0dX2UKGgGR0BytdWZJCjUaAdLvmgIR0DgLe995yEMdX2UKGgGR0BxVpjslb/waAdLumgIR0DgLfFd0JWvdX2UKGgGR0Bxc8l/pdKNaAdLxWgIR0DgLfH4QjD9dX2UKGgGR0BzbiOo5xR3aAdLxWgIR0DgLfJFH8TBdX2UKGgGR0ByRncrRSgoaAdLrmgIR0DgLfc5R0lrdX2UKGgGR0By7eZqmCRPaAdL32gIR0DgLhTeHi3odX2UKGgGR0ByDQG/vfCRaAdLw2gIR0DgLhv8ZUDMdX2UKGgGR0By49qJuVHGaAdLsmgIR0DgLh5Wf9P2dX2UKGgGR0Bwe5LvkRzzaAdL02gIR0DgLh/vOyE+dX2UKGgGR0By7s+Y+jdpaAdLz2gIR0DgLiBZAY51dX2UKGgGR0BxQaH0se4kaAdLr2gIR0DgLiBYRNAUdX2UKGgGR0BwkZcjZ+QVaAdLumgIR0DgLi75VOsUdX2UKGgGR0Bu5UF0PpY+aAdLsGgIR0DgLjmYgJTmdX2UKGgGR0Bv6M85jpcHaAdLtmgIR0DgLj1upjtpdX2UKGgGR0BzWhoFmnO0aAdLz2gIR0DgLkC/N7jUdX2UKGgGR0By81bTtsvaaAdLwmgIR0DgLkHoxpL3dX2UKGgGR0Bwuw2ETQE7aAdL2mgIR0DgLkO3m3fAdX2UKGgGR0Bup2OGTLW7aAdLyGgIR0DgLke4DLbIdX2UKGgGR0ByDPfAKv3baAdL2GgIR0DgLk2QRwqBdX2UKGgGR0BxprZQHiWFaAdLzmgIR0DgLlExZdOZdX2UKGgGR0ByI/RWtEG8aAdL5GgIR0DgLlM9IwuedX2UKGgGR0BRTYVM23rlaAdLnmgIR0DgLmMs5GSZdX2UKGgGR0BxMzuBtk4FaAdLu2gIR0DgLm9+1jRVdX2UKGgGR0BxDA8FINExaAdLzGgIR0DgLnD2wFC+dX2UKGgGR0BwsSjKxLTQaAdLuWgIR0DgLnKIkZ75dX2UKGgGR0ByYu1y/9HdaAdLwWgIR0DgLnavvjOtdX2UKGgGR0BxEE9W6shgaAdLtmgIR0DgLoHA44p+dX2UKGgGR0BzihAfMfRvaAdL2GgIR0DgLoG7ulXSdX2UKGgGR0BzlZfdAPd3aAdLtWgIR0DgLovy3kPudX2UKGgGR0BvWR1HOKO1aAdLw2gIR0DgLpdWV/tqdX2UKGgGR0BuuBxvNu+AaAdLw2gIR0DgLprQ8fV7dX2UKGgGR0Bx0Gv8qFyraAdLyWgIR0DgLp8DXe3ydX2UKGgGR0BxYJydWhh6aAdLyWgIR0DgLqD/VAiWdX2UKGgGR0Bzvfggow23aAdLsmgIR0DgLqG2AoXsdX2UKGgGR0BzrNg5R0lraAdLy2gIR0DgLqXwG4ZudX2UKGgGR0By6YAYHgP3aAdLv2gIR0DgLqq/etSydX2UKGgGR0B0m4n5SFXaaAdLxmgIR0DgLq/WilBQdX2UKGgGR0Byw4b5uZTiaAdL1mgIR0DgLsjvBrN4dX2UKGgGR0By2Oc2BJ7LaAdLxGgIR0DgLs2rjo6kdX2UKGgGR0Byle5I6KceaAdL22gIR0DgLthuqFRHdX2UKGgGR0BzVCOFQEZBaAdL1WgIR0DgLths+FDfdX2UKGgGR0ByIWqNp/PPaAdLzmgIR0DgLtmQwsXjdX2UKGgGR0BxmvRWtEG8aAdLwGgIR0DgLt2y57PZdX2UKGgGR0BAED3/Pw/gaAdLh2gIR0DgLuDkMkQgdX2UKGgGR0BzDfAsTWXkaAdL2GgIR0DgLuinc+JQdX2UKGgGR0By5WMm4RVZaAdLzWgIR0DgLu2AKfFrdX2UKGgGR0BvDRrLyMDPaAdLumgIR0DgLu781n/UdX2UKGgGR0B0LUoBq9GraAdLu2gIR0DgLvJ07r9mdX2UKGgGR0Bxa3FyaNMoaAdLsGgIR0DgLvPb48EFdX2UKGgGR0BzlDFYMfA9aAdLx2gIR0DgLvqshgVodX2UKGgGR0ByjU3EQ5FPaAdLxmgIR0DgLwDjlxOtdX2UKGgGR0BygD0aqCHzaAdLxWgIR0DgLwqX1J18dX2UKGgGR0BzJ59G7SRbaAdL1GgIR0DgLwv2OhkBdX2UKGgGR0Bx911yNn5BaAdLpmgIR0DgLxPkJ8fFdX2UKGgGR0Bxve2uxKQJaAdLsGgIR0DgLxx1BdD6dX2UKGgGR0BxAUjxCpm3aAdLqmgIR0DgLyMrxRVIdX2UKGgGR0Bxoo7OmixnaAdLtmgIR0DgLy58OTaCdX2UKGgGR0BwIXj6vaDgaAdLw2gIR0DgLzCT+vQodX2UKGgGR0ByyISsbNr1aAdLumgIR0DgLzQCHRCydX2UKGgGR0A0pPWQOnVHaAdLX2gIR0DgLziGIsRQdX2UKGgGR0ByrX9Nvfj0aAdL22gIR0DgLzsKsuFpdX2UKGgGR0Bx04qVhTfjaAdLx2gIR0DgL0Ftm+TNdX2UKGgGR0ByRslQdjoZaAdLqGgIR0DgL0aAPuohdX2UKGgGR0BzH0/cFhXsaAdLwWgIR0DgL0hnTy8SdX2UKGgGR0Bv5bHEMspYaAdLzWgIR0DgL0i6NEPUdX2UKGgGR0Bx7K+IuXeFaAdLw2gIR0DgL0p4iX6ZdX2UKGgGR0BzuW7iADq4aAdL0GgIR0DgL0rsfJV9dX2UKGgGR0BzIwiyIHkcaAdLsmgIR0DgL1AJTl1bdX2UKGgGR0B0UhY4hllLaAdLzmgIR0DgL2YuSOindX2UKGgGR0BxodcC5mROaAdLzGgIR0DgL2/N5+pgdX2UKGgGR0By2w6ZH/cWaAdL1WgIR0DgL36I0IkadX2UKGgGR0BxxqstCiRGaAdLqWgIR0DgL4DEcbR4dX2UKGgGR0BvnUEvCdjHaAdL1mgIR0DgL4Z544ZNdX2UKGgGR0BwKMDaGpMpaAdLrmgIR0DgL4iSzw+ddX2UKGgGR0BxwlrULDyfaAdLwWgIR0DgL4mE12q2dX2UKGgGR0BxfOrHU+cIaAdLr2gIR0DgL5KDOkckdX2UKGgGR0BzG64Wk8A8aAdLxGgIR0DgL5UvWYnfdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 5640,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8xODkxMDkyNDI0LnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:875292af39b3edf331037f442f40185f229823c88fa481001d69da4406a733cc
3
+ size 88490
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df51e44d066525190fbcc51e01c7f25eb0814ab712f8e11f25872fbbf08a0d05
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.1
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.28.1
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.2972164808933, "std_reward": 19.38780924736996, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-09T21:31:18.177026"}