Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 285.30 +/- 19.39
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>", "_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 7012352, "_total_timesteps": 7000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699535408138996165, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqUYz389yc9+Qg/vllD2L7uYWG+dHaJPQAAAAAAAAAAzfxIPONHuj/qfz0+siaGPst5Hzw9ZNQ9AAAAAAAAAADaAcU9GSxRP9azhbuBAg+/LJF8PoVlzbsAAAAAAAAAAEBNob0mEq0/RVYZv8M5ur4+AxC9VpGNvgAAAAAAAAAAzZEnvUitrD42r7g98S/8vpCYDT3bBeQ9AAAAAAAAAADmpSa9rjmzukUG77TeMCewu7vcuTqrSjQAAIA/AACAP02H3T0uDLc/DvWTPumk6b7GGIo+wUoCPgAAAAAAAAAAAP0NPf/94z7I+ky+FSsNv+2LB72MMhq+AAAAAAAAAADQ/K++JD0YvcCQrTwuzGu3iLsjPkyPJTwAAAAAAAAAAKBtGT6frXs/dnywPR8XG78e2sc+lk4OvQAAAAAAAAAAZnQ3vI/+WbplqgQ1jyj3LybukjsTy3O0AACAPwAAgD9mZi67e0aWuiUljbcCbpOyS2DRuhFqozYAAIA/AACAP403yL32rHe66U4+Ol7NMLbXPJk6AvdduQAAAAAAAIA/M3u5O2Yidj/71Gm7eTUnv0si+zumRNk9AAAAAAAAAADNadC83FYavL62j72d3cU8nzeEPVtTor0AAIA/AACAPwAgGTwfGGY/ovAJvdG5Lr9Icxo9V94lvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0017645714285714487, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLaYYR/ViGMAWyUS9CMAXSUR0DgLKiscQyzdX2UKGgGR0ByDyRYA80UaAdLsGgIR0DgLLbCXyAhdX2UKGgGR0BxSQZDRc/uaAdL22gIR0DgLLnDYRNAdX2UKGgGR0BwBE0xdpqRaAdLv2gIR0DgLMEPz4DcdX2UKGgGR0BztmCxu89PaAdLymgIR0DgLMghmoR7dX2UKGgGR0Bw/JGTcIqtaAdLyGgIR0DgLMlWtEG8dX2UKGgGR0Bw64sGxD9gaAdLu2gIR0DgLM+iL2pRdX2UKGgGR0BxnnftQbdaaAdLq2gIR0DgLNHGbTc7dX2UKGgGR0BwRKF36hxpaAdLwWgIR0DgLNJdM0xedX2UKGgGR0ByoCpS75EdaAdLuWgIR0DgLNJNeMQ3dX2UKGgGR0BzC5DfFaStaAdLw2gIR0DgLNU8g6ltdX2UKGgGR0Bycen5zo2XaAdLvWgIR0DgLOFR6WxAdX2UKGgGR0BwVCa9bor4aAdLqWgIR0DgLOpu3trsdX2UKGgGR0ByfC9cry2AaAdL2WgIR0DgLPsn8baRdX2UKGgGR0Bt4384xUNsaAdLv2gIR0DgLP3AD7qIdX2UKGgGR0BziJUhmoR7aAdLymgIR0DgLcXiUgSwdX2UKGgGR0BxNB6Rhc7haAdL5WgIR0DgLdA2/i5vdX2UKGgGR0BxwxAprk8zaAdLwGgIR0DgLdN3ztkXdX2UKGgGR0Bzf4MMI/qxaAdL0WgIR0DgLd6n1nM/dX2UKGgGR0Bw30uBczInaAdLrmgIR0DgLeUeQuEmdX2UKGgGR0Bx38f3evZAaAdLw2gIR0DgLec2kSEldX2UKGgGR0Byr3HDJlreaAdL4mgIR0DgLe6jeKsNdX2UKGgGR0BxpJ2Qnx8VaAdL0GgIR0DgLe6nLJS0dX2UKGgGR0BytdWZJCjUaAdLvmgIR0DgLe995yEMdX2UKGgGR0BxVpjslb/waAdLumgIR0DgLfFd0JWvdX2UKGgGR0Bxc8l/pdKNaAdLxWgIR0DgLfH4QjD9dX2UKGgGR0BzbiOo5xR3aAdLxWgIR0DgLfJFH8TBdX2UKGgGR0ByRncrRSgoaAdLrmgIR0DgLfc5R0lrdX2UKGgGR0By7eZqmCRPaAdL32gIR0DgLhTeHi3odX2UKGgGR0ByDQG/vfCRaAdLw2gIR0DgLhv8ZUDMdX2UKGgGR0By49qJuVHGaAdLsmgIR0DgLh5Wf9P2dX2UKGgGR0Bwe5LvkRzzaAdL02gIR0DgLh/vOyE+dX2UKGgGR0By7s+Y+jdpaAdLz2gIR0DgLiBZAY51dX2UKGgGR0BxQaH0se4kaAdLr2gIR0DgLiBYRNAUdX2UKGgGR0BwkZcjZ+QVaAdLumgIR0DgLi75VOsUdX2UKGgGR0Bu5UF0PpY+aAdLsGgIR0DgLjmYgJTmdX2UKGgGR0Bv6M85jpcHaAdLtmgIR0DgLj1upjtpdX2UKGgGR0BzWhoFmnO0aAdLz2gIR0DgLkC/N7jUdX2UKGgGR0By81bTtsvaaAdLwmgIR0DgLkHoxpL3dX2UKGgGR0Bwuw2ETQE7aAdL2mgIR0DgLkO3m3fAdX2UKGgGR0Bup2OGTLW7aAdLyGgIR0DgLke4DLbIdX2UKGgGR0ByDPfAKv3baAdL2GgIR0DgLk2QRwqBdX2UKGgGR0BxprZQHiWFaAdLzmgIR0DgLlExZdOZdX2UKGgGR0ByI/RWtEG8aAdL5GgIR0DgLlM9IwuedX2UKGgGR0BRTYVM23rlaAdLnmgIR0DgLmMs5GSZdX2UKGgGR0BxMzuBtk4FaAdLu2gIR0DgLm9+1jRVdX2UKGgGR0BxDA8FINExaAdLzGgIR0DgLnD2wFC+dX2UKGgGR0BwsSjKxLTQaAdLuWgIR0DgLnKIkZ75dX2UKGgGR0ByYu1y/9HdaAdLwWgIR0DgLnavvjOtdX2UKGgGR0BxEE9W6shgaAdLtmgIR0DgLoHA44p+dX2UKGgGR0BzihAfMfRvaAdL2GgIR0DgLoG7ulXSdX2UKGgGR0BzlZfdAPd3aAdLtWgIR0DgLovy3kPudX2UKGgGR0BvWR1HOKO1aAdLw2gIR0DgLpdWV/tqdX2UKGgGR0BuuBxvNu+AaAdLw2gIR0DgLprQ8fV7dX2UKGgGR0Bx0Gv8qFyraAdLyWgIR0DgLp8DXe3ydX2UKGgGR0BxYJydWhh6aAdLyWgIR0DgLqD/VAiWdX2UKGgGR0Bzvfggow23aAdLsmgIR0DgLqG2AoXsdX2UKGgGR0BzrNg5R0lraAdLy2gIR0DgLqXwG4ZudX2UKGgGR0By6YAYHgP3aAdLv2gIR0DgLqq/etSydX2UKGgGR0B0m4n5SFXaaAdLxmgIR0DgLq/WilBQdX2UKGgGR0Byw4b5uZTiaAdL1mgIR0DgLsjvBrN4dX2UKGgGR0By2Oc2BJ7LaAdLxGgIR0DgLs2rjo6kdX2UKGgGR0Byle5I6KceaAdL22gIR0DgLthuqFRHdX2UKGgGR0BzVCOFQEZBaAdL1WgIR0DgLths+FDfdX2UKGgGR0ByIWqNp/PPaAdLzmgIR0DgLtmQwsXjdX2UKGgGR0BxmvRWtEG8aAdLwGgIR0DgLt2y57PZdX2UKGgGR0BAED3/Pw/gaAdLh2gIR0DgLuDkMkQgdX2UKGgGR0BzDfAsTWXkaAdL2GgIR0DgLuinc+JQdX2UKGgGR0By5WMm4RVZaAdLzWgIR0DgLu2AKfFrdX2UKGgGR0BvDRrLyMDPaAdLumgIR0DgLu781n/UdX2UKGgGR0B0LUoBq9GraAdLu2gIR0DgLvJ07r9mdX2UKGgGR0Bxa3FyaNMoaAdLsGgIR0DgLvPb48EFdX2UKGgGR0BzlDFYMfA9aAdLx2gIR0DgLvqshgVodX2UKGgGR0ByjU3EQ5FPaAdLxmgIR0DgLwDjlxOtdX2UKGgGR0BygD0aqCHzaAdLxWgIR0DgLwqX1J18dX2UKGgGR0BzJ59G7SRbaAdL1GgIR0DgLwv2OhkBdX2UKGgGR0Bx911yNn5BaAdLpmgIR0DgLxPkJ8fFdX2UKGgGR0Bxve2uxKQJaAdLsGgIR0DgLxx1BdD6dX2UKGgGR0BxAUjxCpm3aAdLqmgIR0DgLyMrxRVIdX2UKGgGR0Bxoo7OmixnaAdLtmgIR0DgLy58OTaCdX2UKGgGR0BwIXj6vaDgaAdLw2gIR0DgLzCT+vQodX2UKGgGR0ByyISsbNr1aAdLumgIR0DgLzQCHRCydX2UKGgGR0A0pPWQOnVHaAdLX2gIR0DgLziGIsRQdX2UKGgGR0ByrX9Nvfj0aAdL22gIR0DgLzsKsuFpdX2UKGgGR0Bx04qVhTfjaAdLx2gIR0DgL0Ftm+TNdX2UKGgGR0ByRslQdjoZaAdLqGgIR0DgL0aAPuohdX2UKGgGR0BzH0/cFhXsaAdLwWgIR0DgL0hnTy8SdX2UKGgGR0Bv5bHEMspYaAdLzWgIR0DgL0i6NEPUdX2UKGgGR0Bx7K+IuXeFaAdLw2gIR0DgL0p4iX6ZdX2UKGgGR0BzuW7iADq4aAdL0GgIR0DgL0rsfJV9dX2UKGgGR0BzIwiyIHkcaAdLsmgIR0DgL1AJTl1bdX2UKGgGR0B0UhY4hllLaAdLzmgIR0DgL2YuSOindX2UKGgGR0BxodcC5mROaAdLzGgIR0DgL2/N5+pgdX2UKGgGR0By2w6ZH/cWaAdL1WgIR0DgL36I0IkadX2UKGgGR0BxxqstCiRGaAdLqWgIR0DgL4DEcbR4dX2UKGgGR0BvnUEvCdjHaAdL1mgIR0DgL4Z544ZNdX2UKGgGR0BwKMDaGpMpaAdLrmgIR0DgL4iSzw+ddX2UKGgGR0BxwlrULDyfaAdLwWgIR0DgL4mE12q2dX2UKGgGR0BxfOrHU+cIaAdLr2gIR0DgL5KDOkckdX2UKGgGR0BzG64Wk8A8aAdLxGgIR0DgL5UvWYnfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5640, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8xODkxMDkyNDI0LnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce8fcaea81c404e2e04ab380cd180ca967f49e025516beef419306d58b1fbf01
|
3 |
+
size 147739
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 7012352,
|
25 |
+
"_total_timesteps": 7000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1699535408138996165,
|
30 |
+
"learning_rate": 0.0,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqUYz389yc9+Qg/vllD2L7uYWG+dHaJPQAAAAAAAAAAzfxIPONHuj/qfz0+siaGPst5Hzw9ZNQ9AAAAAAAAAADaAcU9GSxRP9azhbuBAg+/LJF8PoVlzbsAAAAAAAAAAEBNob0mEq0/RVYZv8M5ur4+AxC9VpGNvgAAAAAAAAAAzZEnvUitrD42r7g98S/8vpCYDT3bBeQ9AAAAAAAAAADmpSa9rjmzukUG77TeMCewu7vcuTqrSjQAAIA/AACAP02H3T0uDLc/DvWTPumk6b7GGIo+wUoCPgAAAAAAAAAAAP0NPf/94z7I+ky+FSsNv+2LB72MMhq+AAAAAAAAAADQ/K++JD0YvcCQrTwuzGu3iLsjPkyPJTwAAAAAAAAAAKBtGT6frXs/dnywPR8XG78e2sc+lk4OvQAAAAAAAAAAZnQ3vI/+WbplqgQ1jyj3LybukjsTy3O0AACAPwAAgD9mZi67e0aWuiUljbcCbpOyS2DRuhFqozYAAIA/AACAP403yL32rHe66U4+Ol7NMLbXPJk6AvdduQAAAAAAAIA/M3u5O2Yidj/71Gm7eTUnv0si+zumRNk9AAAAAAAAAADNadC83FYavL62j72d3cU8nzeEPVtTor0AAIA/AACAPwAgGTwfGGY/ovAJvdG5Lr9Icxo9V94lvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0017645714285714487,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLaYYR/ViGMAWyUS9CMAXSUR0DgLKiscQyzdX2UKGgGR0ByDyRYA80UaAdLsGgIR0DgLLbCXyAhdX2UKGgGR0BxSQZDRc/uaAdL22gIR0DgLLnDYRNAdX2UKGgGR0BwBE0xdpqRaAdLv2gIR0DgLMEPz4DcdX2UKGgGR0BztmCxu89PaAdLymgIR0DgLMghmoR7dX2UKGgGR0Bw/JGTcIqtaAdLyGgIR0DgLMlWtEG8dX2UKGgGR0Bw64sGxD9gaAdLu2gIR0DgLM+iL2pRdX2UKGgGR0BxnnftQbdaaAdLq2gIR0DgLNHGbTc7dX2UKGgGR0BwRKF36hxpaAdLwWgIR0DgLNJdM0xedX2UKGgGR0ByoCpS75EdaAdLuWgIR0DgLNJNeMQ3dX2UKGgGR0BzC5DfFaStaAdLw2gIR0DgLNU8g6ltdX2UKGgGR0Bycen5zo2XaAdLvWgIR0DgLOFR6WxAdX2UKGgGR0BwVCa9bor4aAdLqWgIR0DgLOpu3trsdX2UKGgGR0ByfC9cry2AaAdL2WgIR0DgLPsn8baRdX2UKGgGR0Bt4384xUNsaAdLv2gIR0DgLP3AD7qIdX2UKGgGR0BziJUhmoR7aAdLymgIR0DgLcXiUgSwdX2UKGgGR0BxNB6Rhc7haAdL5WgIR0DgLdA2/i5vdX2UKGgGR0BxwxAprk8zaAdLwGgIR0DgLdN3ztkXdX2UKGgGR0Bzf4MMI/qxaAdL0WgIR0DgLd6n1nM/dX2UKGgGR0Bw30uBczInaAdLrmgIR0DgLeUeQuEmdX2UKGgGR0Bx38f3evZAaAdLw2gIR0DgLec2kSEldX2UKGgGR0Byr3HDJlreaAdL4mgIR0DgLe6jeKsNdX2UKGgGR0BxpJ2Qnx8VaAdL0GgIR0DgLe6nLJS0dX2UKGgGR0BytdWZJCjUaAdLvmgIR0DgLe995yEMdX2UKGgGR0BxVpjslb/waAdLumgIR0DgLfFd0JWvdX2UKGgGR0Bxc8l/pdKNaAdLxWgIR0DgLfH4QjD9dX2UKGgGR0BzbiOo5xR3aAdLxWgIR0DgLfJFH8TBdX2UKGgGR0ByRncrRSgoaAdLrmgIR0DgLfc5R0lrdX2UKGgGR0By7eZqmCRPaAdL32gIR0DgLhTeHi3odX2UKGgGR0ByDQG/vfCRaAdLw2gIR0DgLhv8ZUDMdX2UKGgGR0By49qJuVHGaAdLsmgIR0DgLh5Wf9P2dX2UKGgGR0Bwe5LvkRzzaAdL02gIR0DgLh/vOyE+dX2UKGgGR0By7s+Y+jdpaAdLz2gIR0DgLiBZAY51dX2UKGgGR0BxQaH0se4kaAdLr2gIR0DgLiBYRNAUdX2UKGgGR0BwkZcjZ+QVaAdLumgIR0DgLi75VOsUdX2UKGgGR0Bu5UF0PpY+aAdLsGgIR0DgLjmYgJTmdX2UKGgGR0Bv6M85jpcHaAdLtmgIR0DgLj1upjtpdX2UKGgGR0BzWhoFmnO0aAdLz2gIR0DgLkC/N7jUdX2UKGgGR0By81bTtsvaaAdLwmgIR0DgLkHoxpL3dX2UKGgGR0Bwuw2ETQE7aAdL2mgIR0DgLkO3m3fAdX2UKGgGR0Bup2OGTLW7aAdLyGgIR0DgLke4DLbIdX2UKGgGR0ByDPfAKv3baAdL2GgIR0DgLk2QRwqBdX2UKGgGR0BxprZQHiWFaAdLzmgIR0DgLlExZdOZdX2UKGgGR0ByI/RWtEG8aAdL5GgIR0DgLlM9IwuedX2UKGgGR0BRTYVM23rlaAdLnmgIR0DgLmMs5GSZdX2UKGgGR0BxMzuBtk4FaAdLu2gIR0DgLm9+1jRVdX2UKGgGR0BxDA8FINExaAdLzGgIR0DgLnD2wFC+dX2UKGgGR0BwsSjKxLTQaAdLuWgIR0DgLnKIkZ75dX2UKGgGR0ByYu1y/9HdaAdLwWgIR0DgLnavvjOtdX2UKGgGR0BxEE9W6shgaAdLtmgIR0DgLoHA44p+dX2UKGgGR0BzihAfMfRvaAdL2GgIR0DgLoG7ulXSdX2UKGgGR0BzlZfdAPd3aAdLtWgIR0DgLovy3kPudX2UKGgGR0BvWR1HOKO1aAdLw2gIR0DgLpdWV/tqdX2UKGgGR0BuuBxvNu+AaAdLw2gIR0DgLprQ8fV7dX2UKGgGR0Bx0Gv8qFyraAdLyWgIR0DgLp8DXe3ydX2UKGgGR0BxYJydWhh6aAdLyWgIR0DgLqD/VAiWdX2UKGgGR0Bzvfggow23aAdLsmgIR0DgLqG2AoXsdX2UKGgGR0BzrNg5R0lraAdLy2gIR0DgLqXwG4ZudX2UKGgGR0By6YAYHgP3aAdLv2gIR0DgLqq/etSydX2UKGgGR0B0m4n5SFXaaAdLxmgIR0DgLq/WilBQdX2UKGgGR0Byw4b5uZTiaAdL1mgIR0DgLsjvBrN4dX2UKGgGR0By2Oc2BJ7LaAdLxGgIR0DgLs2rjo6kdX2UKGgGR0Byle5I6KceaAdL22gIR0DgLthuqFRHdX2UKGgGR0BzVCOFQEZBaAdL1WgIR0DgLths+FDfdX2UKGgGR0ByIWqNp/PPaAdLzmgIR0DgLtmQwsXjdX2UKGgGR0BxmvRWtEG8aAdLwGgIR0DgLt2y57PZdX2UKGgGR0BAED3/Pw/gaAdLh2gIR0DgLuDkMkQgdX2UKGgGR0BzDfAsTWXkaAdL2GgIR0DgLuinc+JQdX2UKGgGR0By5WMm4RVZaAdLzWgIR0DgLu2AKfFrdX2UKGgGR0BvDRrLyMDPaAdLumgIR0DgLu781n/UdX2UKGgGR0B0LUoBq9GraAdLu2gIR0DgLvJ07r9mdX2UKGgGR0Bxa3FyaNMoaAdLsGgIR0DgLvPb48EFdX2UKGgGR0BzlDFYMfA9aAdLx2gIR0DgLvqshgVodX2UKGgGR0ByjU3EQ5FPaAdLxmgIR0DgLwDjlxOtdX2UKGgGR0BygD0aqCHzaAdLxWgIR0DgLwqX1J18dX2UKGgGR0BzJ59G7SRbaAdL1GgIR0DgLwv2OhkBdX2UKGgGR0Bx911yNn5BaAdLpmgIR0DgLxPkJ8fFdX2UKGgGR0Bxve2uxKQJaAdLsGgIR0DgLxx1BdD6dX2UKGgGR0BxAUjxCpm3aAdLqmgIR0DgLyMrxRVIdX2UKGgGR0Bxoo7OmixnaAdLtmgIR0DgLy58OTaCdX2UKGgGR0BwIXj6vaDgaAdLw2gIR0DgLzCT+vQodX2UKGgGR0ByyISsbNr1aAdLumgIR0DgLzQCHRCydX2UKGgGR0A0pPWQOnVHaAdLX2gIR0DgLziGIsRQdX2UKGgGR0ByrX9Nvfj0aAdL22gIR0DgLzsKsuFpdX2UKGgGR0Bx04qVhTfjaAdLx2gIR0DgL0Ftm+TNdX2UKGgGR0ByRslQdjoZaAdLqGgIR0DgL0aAPuohdX2UKGgGR0BzH0/cFhXsaAdLwWgIR0DgL0hnTy8SdX2UKGgGR0Bv5bHEMspYaAdLzWgIR0DgL0i6NEPUdX2UKGgGR0Bx7K+IuXeFaAdLw2gIR0DgL0p4iX6ZdX2UKGgGR0BzuW7iADq4aAdL0GgIR0DgL0rsfJV9dX2UKGgGR0BzIwiyIHkcaAdLsmgIR0DgL1AJTl1bdX2UKGgGR0B0UhY4hllLaAdLzmgIR0DgL2YuSOindX2UKGgGR0BxodcC5mROaAdLzGgIR0DgL2/N5+pgdX2UKGgGR0By2w6ZH/cWaAdL1WgIR0DgL36I0IkadX2UKGgGR0BxxqstCiRGaAdLqWgIR0DgL4DEcbR4dX2UKGgGR0BvnUEvCdjHaAdL1mgIR0DgL4Z544ZNdX2UKGgGR0BwKMDaGpMpaAdLrmgIR0DgL4iSzw+ddX2UKGgGR0BxwlrULDyfaAdLwWgIR0DgL4mE12q2dX2UKGgGR0BxfOrHU+cIaAdLr2gIR0DgL5KDOkckdX2UKGgGR0BzG64Wk8A8aAdLxGgIR0DgL5UvWYnfdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 5640,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8xODkxMDkyNDI0LnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:875292af39b3edf331037f442f40185f229823c88fa481001d69da4406a733cc
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df51e44d066525190fbcc51e01c7f25eb0814ab712f8e11f25872fbbf08a0d05
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.1
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.28.1
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 285.2972164808933, "std_reward": 19.38780924736996, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-09T21:31:18.177026"}
|