gael1130 commited on
Commit
592edd9
·
verified ·
1 Parent(s): e5ea468

My Second model on HuggingFace. And first lunarlander. Yay

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 276.20 +/- 23.07
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 265.71 +/- 13.08
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc888d31900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc888d31990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc888d31a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc888d31ab0>", "_build": "<function ActorCriticPolicy._build at 0x7fc888d31b40>", "forward": "<function ActorCriticPolicy.forward at 0x7fc888d31bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc888d31c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc888d31cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc888d31d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc888d31e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc888d31ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc888d31f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc888ecda00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705772404340165193, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDdx4Uvf0qMAWyUS6WMAXSUR0Cx1wWM0gr6dX2UKGgGR0ByTEXYUWVNaAdL9WgIR0Cx1rUzfrKOdX2UKGgGR0Bxz91X/5tWaAdL6GgIR0Cx1s7tqpLmdX2UKGgGR0Bx6q8Djin6aAdNAAFoCEdAsdc/1Iy0r3V9lChoBkdAcjrxMFlkH2gHS/9oCEdAsdb3oNd7fHV9lChoBkdAcWbtuDSPVGgHS91oCEdAsdeP8gpz93V9lChoBkdAcJnKHO8kEGgHS8ZoCEdAsdduW8h9s3V9lChoBkdAcVt89fTkQ2gHS8doCEdAsddxr0rbxnV9lChoBkdAcXMMmWt2cWgHS6RoCEdAsdfUJNTLn3V9lChoBkdAcf3U5uIhyWgHS/9oCEdAsde4dNnGsHV9lChoBkdAYI3JNj9XLmgHTegDaAhHQLHXwNhVlwt1fZQoaAZHQHLOZhOP/71oB0v1aAhHQLHYFZjhDPZ1fZQoaAZHQHA31u3trsVoB0vRaAhHQLHXyKO1fE51fZQoaAZHQHGHKMWGh25oB0utaAhHQLHX7Hjp9ql1fZQoaAZHQG7q2NFSbYtoB0unaAhHQLHYPozN2Tx1fZQoaAZHQHELB0ZFXq9oB0vGaAhHQLHYBjoIOYp1fZQoaAZHQHQgxJAdGRVoB00IAWgIR0Cx2FvUONHZdX2UKGgGR0BwnlYA80UHaAdLzGgIR0Cx2CWy9mHydX2UKGgGR0Bws4bS7Xg+aAdLyGgIR0Cx2KCgbp/xdX2UKGgGR0BxqVas6q82aAdL2mgIR0Cx2FC5iExqdX2UKGgGR0Byl1FOO802aAdLy2gIR0Cx2OxYzSCwdX2UKGgGR0BwD1u0kWykaAdLtmgIR0Cx2KKaoddWdX2UKGgGR0ByZsjUutfYaAdL+GgIR0Cx2Kdr9EThdX2UKGgGR0Bw4impEQXiaAdLwWgIR0Cx2LE1/DtPdX2UKGgGR0Bx1wExIre7aAdLqmgIR0Cx2Rv3nIQwdX2UKGgGR0BxgsxtYSxraAdLz2gIR0Cx2SS/O+qSdX2UKGgGR0BxqKFuejEfaAdL0WgIR0Cx2QFhCtzTdX2UKGgGR0BxwMr4FiazaAdL3GgIR0Cx2RlLzwtrdX2UKGgGR0BwnTB9Cu2aaAdLuWgIR0Cx2Xm9DhLodX2UKGgGR0BwalOk+HJtaAdL8WgIR0Cx2S3y7PIGdX2UKGgGR0Bw0cWvbGm2aAdLx2gIR0Cx2Tn5vcagdX2UKGgGR0BxwFLXcxj8aAdL3GgIR0Cx2UD7yhBadX2UKGgGR0ByH3D8+A3DaAdLsGgIR0Cx2a9AgPmQdX2UKGgGR0ByInJKaoddaAdL9mgIR0Cx2bfOY6XCdX2UKGgGR0BxpMeZG8VYaAdL3WgIR0Cx2XhzijtYdX2UKGgGR0Bvf+ymhufmaAdLyWgIR0Cx2YIRIz3zdX2UKGgGR0ByHO8Zk079aAdLpGgIR0Cx2aJIDoyLdX2UKGgGR0Bwm6ETQE6laAdLzGgIR0Cx2htwWFewdX2UKGgGR0Bw9V0T101ZaAdLwWgIR0Cx2j6Kcd5qdX2UKGgGR0BwdvmZE2HdaAdL8WgIR0Cx2hQHJLdvdX2UKGgGR0BwjRmZmZmaaAdLn2gIR0Cx2iEu6ErYdX2UKGgGR0BxBg1BMSK4aAdL5GgIR0Cx2oLZnL7odX2UKGgGR0BzHLIcR15jaAdNIAFoCEdAsdpe9ytFKHV9lChoBkdAcPGlKK5082gHS9RoCEdAsdpnA9FF2HV9lChoBkdAcfi4o7V8TmgHS8FoCEdAsdppmqYJFHV9lChoBkdAcpCUSqU/wGgHS+loCEdAsdpwtHxz73V9lChoBkdAcCqQT238XWgHS9ZoCEdAsdrKnn+yaHV9lChoBkdAcdKBoVVPvmgHS7doCEdAsdrTIp6QeXV9lChoBkdAb5bUz9CNTGgHS7loCEdAsdqgXIlt0nV9lChoBkdAcVXeVLSNO2gHS/NoCEdAsdrApobn5nV9lChoBkdAcIdRQ79ycWgHS85oCEdAsdrPGipNsXV9lChoBkdAcU9uuieum2gHS71oCEdAsdrWwr1/UnV9lChoBkdAcd7752yLRGgHS59oCEdAsdtAdELH/HV9lChoBkdAcr83Sa3I/GgHS/hoCEdAsdtAhr30w3V9lChoBkdAcrHIbwSamWgHS8xoCEdAsdthx6v7nHV9lChoBkdAb5Qukk8ifWgHS6ZoCEdAsdsZ/qgRLHV9lChoBkdAcZsxGDtgKGgHS6doCEdAsduGN70Fr3V9lChoBkdAcjg1OCXhO2gHS9poCEdAsdt2gqVhTnV9lChoBkdAcr2SdOIqLGgHS7hoCEdAsdt6TQmeDnV9lChoBkdAb+uM98qnWWgHS7poCEdAsduEVdonKHV9lChoBkdAcO2FkQPI4mgHS7VoCEdAsduFbkfcOHV9lChoBkdAcLmC0ngHeWgHS8FoCEdAsdvyBFuvU3V9lChoBkdAcA36KtPpIWgHS9NoCEdAsduwXoC+13V9lChoBkdAcKh7/4qPO2gHS71oCEdAsdvFMdtEX3V9lChoBkdAcVotV7x/eGgHS6hoCEdAsdvQ7aIvanV9lChoBkdAbz5Z5iVjZ2gHS8BoCEdAsdvnfvWpZXV9lChoBkdAcoUwztTkyWgHS+1oCEdAsdxCCmMwUXV9lChoBkdAcJRLPD50sGgHS7NoCEdAsdxVyMkyDnV9lChoBkdAcLXknTiKi2gHS8doCEdAsdyoQXhwVHV9lChoBkdAcF4aaTfR/mgHS+JoCEdAsdyumixmkHV9lChoBkdAccGH2RJVbWgHTQEBaAhHQLHcdWU8mrt1fZQoaAZHQHEqVFc6eXloB0vYaAhHQLHcf3lS0jV1fZQoaAZHQHBMMEV32VVoB0usaAhHQLHcme9Ba9t1fZQoaAZHQHEP/QfIS15oB0vfaAhHQLHc9iW3Sa51fZQoaAZHQHAAASeyzHFoB0u2aAhHQLHcsXNTtLN1fZQoaAZHQHNSuMZP2wpoB0u5aAhHQLHcuQZ4wAV1fZQoaAZHQHFo52hZha1oB0vDaAhHQLHcuj9GZu11fZQoaAZHQHDkFUZNwitoB0uraAhHQLHdAACW/rV1fZQoaAZHQG5+SAYpDu1oB0vQaAhHQLHdAo2XLNh1fZQoaAZHQHAcU8V58jRoB0vBaAhHQLHdC88cMmZ1fZQoaAZHQHCPlCkXUH9oB0vkaAhHQLHdOPv8ZUF1fZQoaAZHQHJa6YZ2pyZoB0vKaAhHQLHdja/yoXN1fZQoaAZHQHKpGnGbTc9oB0v8aAhHQLHdjqBEroZ1fZQoaAZHQHKl4JJGvwFoB0vJaAhHQLHdnijtXxR1fZQoaAZHQHCOwo9cKPZoB0vgaAhHQLHeBpfx+a11fZQoaAZHQHJci4rjHXFoB0v1aAhHQLHeNXenAIp1fZQoaAZHQHDrqX0Gu9xoB0vHaAhHQLHeNXgLqlh1fZQoaAZHQHIBkRaouPFoB0vjaAhHQLHd6HC4z8B1fZQoaAZHQHGjiaNMoMNoB0vCaAhHQLHd8fRNRFZ1fZQoaAZHQHLJdJe3QUpoB0vzaAhHQLHd95yU9p11fZQoaAZHQHHx4XKr7wdoB0vqaAhHQLHeDig00nB1fZQoaAZHQHLKtjLB9CxoB0veaAhHQLHeFH+ZPVN1fZQoaAZHQHFcxs2vStxoB0vbaAhHQLHeFVWjoIR1fZQoaAZHQG6hxFAmiQFoB0uwaAhHQLHeGtrsSkF1fZQoaAZHQHBpYfjjrAxoB0vHaAhHQLHeO3Qla8p1fZQoaAZHQHFzN1QqI8BoB0viaAhHQLHebeFtbcJ1fZQoaAZHQHEbJbhWHUNoB0vIaAhHQLHexWmgrYp1fZQoaAZHQHK3m/8EV35oB0vMaAhHQLHedse4kNZ1fZQoaAZHQHH/3X/YJ3RoB0v/aAhHQLHfGqMm4RV1fZQoaAZHQHEEHeFcpspoB0uzaAhHQLHfHsXSBsh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc888d31900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc888d31990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc888d31a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc888d31ab0>", "_build": "<function ActorCriticPolicy._build at 0x7fc888d31b40>", "forward": "<function ActorCriticPolicy.forward at 0x7fc888d31bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc888d31c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc888d31cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc888d31d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc888d31e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc888d31ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc888d31f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc888ecda00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705786070653181402, "learning_rate": 0.0012, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDLg72kn2W7RggNPI5/lzwCZoK8dqeBPQAAgD8AAIA/M4NAvudlpj7EqAo9MTsNv3GVBr7F09Q9AAAAAAAAAAAz3hS+7KiQPwOaUL7g1UW/pg5pvn7/cL0AAAAAAAAAAJo/771xLQk6Bj67Po1J073hE4K8RhdUPAAAAAAAAIA/kxQvvuEhUz5JS5g+htXFviiU9DygGBs9AAAAAAAAAACaNMw9ATSqPY6GX77zLs6+nuSbvTPGEbwAAAAAAAAAAIBSOL08aSs/ckEivPTgNb/q6LS9jGIeOwAAAAAAAAAAjfKWvt5IQT/FIHe97LYdvy2zrb4evgg+AAAAAAAAAAAzZPE9rmucuj1h6TfUqg21pyXnOuyKF7cAAIA/AACAP80Uwzu41tK54in/NGYeHS0pVgQ3/lhltAAAgD8AAIA/ugkxvsPbWz0Yj28+D6C0vmjPlTsuyQw+AAAAAAAAAACNEH4+LNsgP2oD3j2JHT6/o2imPqtRzb0AAAAAAAAAAID6DL728QK8K8FYu7mqALpFnGE9xkTMOgAAgD8AAIA/gOETvk8vCbxun6k6KsuJOO8Kaj0ugN65AACAPwAAgD+aCMy9Bf7hu1TFGD79OQO+5F5KvBEnJb8AAIA/AACAP3OKFD71Jsc+hoewve2fFL9HOPU9mweKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKhVSCOFQGMAWyUS+mMAXSUR0CVt2PVd5Y6dX2UKGgGR0BxlC5avA45aAdLp2gIR0CVuIo1DSgHdX2UKGgGR0BxjEgX/HYIaAdLw2gIR0CVuYyauwHJdX2UKGgGR0BxkzwkPczqaAdLlWgIR0CVutAtnPE9dX2UKGgGR0ByGxX+2mYTaAdL1GgIR0CVus74i5d4dX2UKGgGR0BxkndN34bkaAdLsmgIR0CVuxHfMwDedX2UKGgGR0BxKk29+PRzaAdLwWgIR0CVu4tUn5SFdX2UKGgGR0BwssQVbiZOaAdL0mgIR0CVvAe3QUpNdX2UKGgGR0Bwg/uDzyz5aAdLsGgIR0CVvGxWT5fudX2UKGgGR0BuzNRvWH1waAdLqGgIR0CVvHtdiUgTdX2UKGgGR0By9oQpWmxdaAdLu2gIR0CVvapobn5jdX2UKGgGR0BwBb0VafSQaAdLmWgIR0CVvcT/hl19dX2UKGgGR0BxsBlYlpoLaAdLlGgIR0CVwAjASFoMdX2UKGgGR0Bx0rIIWxhVaAdLwWgIR0CVwGYQarFPdX2UKGgGR0BhPzeANG3GaAdN6ANoCEdAlcFEwrUb1nV9lChoBkdAcyrjSXt0FWgHS8BoCEdAlcHvKp1ifHV9lChoBkdAcKSFzdUKiWgHS65oCEdAlcJP+n62v3V9lChoBkdAb0vmeUY8+2gHS6poCEdAlcKgMc6vJXV9lChoBkdAcmvVGTcIq2gHS8VoCEdAlcKnu3MINXV9lChoBkdAY2ocghbGFWgHTegDaAhHQJXDJCSidrh1fZQoaAZHQHMPo8ZDRdBoB0u6aAhHQJXDOEAYHgR1fZQoaAZHQHGY7l/6O5toB0uuaAhHQJXD75eqrBF1fZQoaAZHQHG7WDYh+v1oB0vOaAhHQJXFD0163RZ1fZQoaAZHQHLJqUA1ejVoB0vKaAhHQJX5HjrAxi51fZQoaAZHQHNm6NdZ7oloB0vbaAhHQJX6IjZ+QU51fZQoaAZHQHAP2yon8bdoB0upaAhHQJX6iDBdld11fZQoaAZHQHGJt0zTF2poB0uyaAhHQJX6kp6QeV91fZQoaAZHQHIX0FGG21FoB0vRaAhHQJX6mmYSg5B1fZQoaAZHQHIFTW07bL5oB0vLaAhHQJX7DOE/Spl1fZQoaAZHQGX3nGS6lLxoB03oA2gIR0CV+6PJJXhgdX2UKGgGR0ByDyKcd5praAdLwmgIR0CV+/52yLQ5dX2UKGgGR0Bzfyoo/iYLaAdL1GgIR0CV/AXpW3jNdX2UKGgGR0ByQnblA/s3aAdLz2gIR0CV/Ftmthd/dX2UKGgGR0BzkKq6vq1PaAdL2GgIR0CV/tgRbr1NdX2UKGgGR0ByDZl6JIlMaAdNAwJoCEdAlf8PZh8YynV9lChoBkdAcepI68xsVWgHS8xoCEdAlgB2ois4k3V9lChoBkdAcVOab4Ju22gHS5loCEdAlgCGwzLwF3V9lChoBkdAcH7xFy7wrmgHS7poCEdAlgDFp0wJxHV9lChoBkdAc7769CeEqWgHS7doCEdAlgEE8V58jXV9lChoBkdAcaWVp9JBgWgHS7poCEdAlgEswQDmsHV9lChoBkdAcxZdE9dNWWgHS7xoCEdAlgE4OtnwonV9lChoBkdAbmtwrDqGDmgHS5hoCEdAlgFqT4cm0HV9lChoBkdAb7h5u63AmGgHS61oCEdAlgG/JaJQ+HV9lChoBkdAcu8OsDGLk2gHS61oCEdAlgJrXpW3jXV9lChoBkdAcZZ6Ymb9ZWgHS85oCEdAlgMuqebut3V9lChoBkdAZAtMt9QXRGgHTegDaAhHQJYDOBy0a611fZQoaAZHQHDlBrN4Z/FoB0udaAhHQJYEMoRZlnR1fZQoaAZHQHGdvYODrZ9oB0uWaAhHQJYFRF1B+nZ1fZQoaAZHQGVEbPhQ3xZoB03oA2gIR0CWBYtoi9qUdX2UKGgGR0Byj/DDTBqLaAdL0mgIR0CWBbVEd/8VdX2UKGgGR0BxwAcrAgxKaAdLnWgIR0CWBe2LYPGydX2UKGgGR0ByWVSYPXkHaAdLsGgIR0CWBf8QZn+RdX2UKGgGR0ByHEN2C/XYaAdLkmgIR0CWBjqKxcFAdX2UKGgGR0BwqDBXS0BwaAdLs2gIR0CWBt5FPSDzdX2UKGgGR0B0Aqx8lXzUaAdL1GgIR0CWB5z5oGpudX2UKGgGR0ByZJc/t6X0aAdL1GgIR0CWB6ornTy8dX2UKGgGR0BwjHqB3A2yaAdLpWgIR0CWCBEYfnwHdX2UKGgGR0ByPmV+qioLaAdL1mgIR0CWCN+UhV2idX2UKGgGR0BxgAnhKlHjaAdLm2gIR0CWCNzkp7TldX2UKGgGR0BjAgKF7D2raAdN6ANoCEdAlgjpblijL3V9lChoBkdAcsah6By0bGgHS9poCEdAlgmghGH58HV9lChoBkdAcS5wHJLdvmgHS51oCEdAlgoMxO+IuXV9lChoBkdAcHmmlImPYGgHS5toCEdAlgolDBuXNXV9lChoBkdAcG6g3tKIzmgHS7FoCEdAlgpdgfEGaHV9lChoBkdAcHMuDSPU8WgHS5loCEdAlgpbaM72c3V9lChoBkdAc00U6gdwN2gHS7VoCEdAlgsHTmW+oXV9lChoBkdAcUbTpxFRYWgHS5doCEdAlgsgjD8+A3V9lChoBkdAb0a8NhE0BWgHS49oCEdAlguTvqkdm3V9lChoBkdAc47YcvM8o2gHS9BoCEdAlgwDZcs19HV9lChoBkdAccrIznA6+2gHS6poCEdAlgxQ3o9s8HV9lChoBkdAc0jV7x/d7GgHS6toCEdAlgy+ejEehnV9lChoBkdAcrCPyTY/V2gHS6hoCEdAlg1aySmqHXV9lChoBkdAcvjxZdOZcGgHS8RoCEdAlg43OfNA1XV9lChoBkdAch3MAWBSUGgHS89oCEdAlg6TVMEidXV9lChoBkdAcHOcsDnvD2gHS6toCEdAlg7pZjhDPXV9lChoBkdAchCgjhUBGWgHS7loCEdAlg+WyC4Bm3V9lChoBkdAc3Bo6S1VpGgHS89oCEdAlg+7/Khcq3V9lChoBkdAcougLqlgt2gHTfcBaAhHQJYP1fWtlqd1fZQoaAZHQHE1grUb1h9oB0u7aAhHQJYP+/xlQMx1fZQoaAZHQHFYuLWI42loB0ujaAhHQJYQKS+xnnN1fZQoaAZHQHDkKreZXuFoB0uZaAhHQJYQ/KRuCPJ1fZQoaAZHQHJVQhfShJ1oB0vbaAhHQJYRDhrFfiR1fZQoaAZHQHHh/bblA/toB0uYaAhHQJYRWD0163R1fZQoaAZHQHCoMvh60IFoB0u2aAhHQJYRaAoXsPd1fZQoaAZHQHHUBDkU9IRoB0vOaAhHQJYRfq+rU9Z1fZQoaAZHQHEbc1Gb1AZoB0uOaAhHQJYTTXI2fkF1fZQoaAZHQHDPqSkj5bhoB0vGaAhHQJYUVkUbkwN1fZQoaAZHQHBys1wYLstoB0uraAhHQJYVMOH31z11fZQoaAZHQG8b93r2QGRoB0umaAhHQJYV/Gecx0x1fZQoaAZHQHK0DJIUahpoB0vOaAhHQJYWW2CuloF1fZQoaAZHQHJC1jurp7loB0u2aAhHQJYWZqFh5Pd1fZQoaAZHQGZrUY0l7dBoB03oA2gIR0CWFw5hBqsVdX2UKGgGR0BwxcVM23rlaAdLvGgIR0CWFwurp7kXdX2UKGgGR0Bx6fQ5WBBiaAdLyGgIR0CWF6NmUW2xdX2UKGgGR0BzF88xKxs3aAdLu2gIR0CWGAseGO+7dX2UKGgGR0BxZ/geii7DaAdLvGgIR0CWGCSPEKmbdX2UKGgGR0BzUlT/ACXAaAdLuWgIR0CWGHIre67NdX2UKGgGR0ByTN77bcoIaAdLzGgIR0CWGPxDLKV6dX2UKGgGR0BwHwFotcv/aAdLnmgIR0CWGUhvR7Z4dX2UKGgGR0Bx3L5qM3qBaAdL2mgIR0CWGW531SOzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.97, "ent_coef": 0.002, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9TqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbbe811795c9f966dec60c9fd0baf0c01d8c543cfdb6ae2ef13eb45a6846815e
3
+ size 148137
ppo-LunarLander-v2-2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc888d31900>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc888d31990>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc888d31a20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc888d31ab0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc888d31b40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc888d31bd0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc888d31c60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc888d31cf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc888d31d80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc888d31e10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc888d31ea0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc888d31f30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc888ecda00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1705786070653181402,
30
+ "learning_rate": 0.0012,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDLg72kn2W7RggNPI5/lzwCZoK8dqeBPQAAgD8AAIA/M4NAvudlpj7EqAo9MTsNv3GVBr7F09Q9AAAAAAAAAAAz3hS+7KiQPwOaUL7g1UW/pg5pvn7/cL0AAAAAAAAAAJo/771xLQk6Bj67Po1J073hE4K8RhdUPAAAAAAAAIA/kxQvvuEhUz5JS5g+htXFviiU9DygGBs9AAAAAAAAAACaNMw9ATSqPY6GX77zLs6+nuSbvTPGEbwAAAAAAAAAAIBSOL08aSs/ckEivPTgNb/q6LS9jGIeOwAAAAAAAAAAjfKWvt5IQT/FIHe97LYdvy2zrb4evgg+AAAAAAAAAAAzZPE9rmucuj1h6TfUqg21pyXnOuyKF7cAAIA/AACAP80Uwzu41tK54in/NGYeHS0pVgQ3/lhltAAAgD8AAIA/ugkxvsPbWz0Yj28+D6C0vmjPlTsuyQw+AAAAAAAAAACNEH4+LNsgP2oD3j2JHT6/o2imPqtRzb0AAAAAAAAAAID6DL728QK8K8FYu7mqALpFnGE9xkTMOgAAgD8AAIA/gOETvk8vCbxun6k6KsuJOO8Kaj0ugN65AACAPwAAgD+aCMy9Bf7hu1TFGD79OQO+5F5KvBEnJb8AAIA/AACAP3OKFD71Jsc+hoewve2fFL9HOPU9mweKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKhVSCOFQGMAWyUS+mMAXSUR0CVt2PVd5Y6dX2UKGgGR0BxlC5avA45aAdLp2gIR0CVuIo1DSgHdX2UKGgGR0BxjEgX/HYIaAdLw2gIR0CVuYyauwHJdX2UKGgGR0BxkzwkPczqaAdLlWgIR0CVutAtnPE9dX2UKGgGR0ByGxX+2mYTaAdL1GgIR0CVus74i5d4dX2UKGgGR0BxkndN34bkaAdLsmgIR0CVuxHfMwDedX2UKGgGR0BxKk29+PRzaAdLwWgIR0CVu4tUn5SFdX2UKGgGR0BwssQVbiZOaAdL0mgIR0CVvAe3QUpNdX2UKGgGR0Bwg/uDzyz5aAdLsGgIR0CVvGxWT5fudX2UKGgGR0BuzNRvWH1waAdLqGgIR0CVvHtdiUgTdX2UKGgGR0By9oQpWmxdaAdLu2gIR0CVvapobn5jdX2UKGgGR0BwBb0VafSQaAdLmWgIR0CVvcT/hl19dX2UKGgGR0BxsBlYlpoLaAdLlGgIR0CVwAjASFoMdX2UKGgGR0Bx0rIIWxhVaAdLwWgIR0CVwGYQarFPdX2UKGgGR0BhPzeANG3GaAdN6ANoCEdAlcFEwrUb1nV9lChoBkdAcyrjSXt0FWgHS8BoCEdAlcHvKp1ifHV9lChoBkdAcKSFzdUKiWgHS65oCEdAlcJP+n62v3V9lChoBkdAb0vmeUY8+2gHS6poCEdAlcKgMc6vJXV9lChoBkdAcmvVGTcIq2gHS8VoCEdAlcKnu3MINXV9lChoBkdAY2ocghbGFWgHTegDaAhHQJXDJCSidrh1fZQoaAZHQHMPo8ZDRdBoB0u6aAhHQJXDOEAYHgR1fZQoaAZHQHGY7l/6O5toB0uuaAhHQJXD75eqrBF1fZQoaAZHQHG7WDYh+v1oB0vOaAhHQJXFD0163RZ1fZQoaAZHQHLJqUA1ejVoB0vKaAhHQJX5HjrAxi51fZQoaAZHQHNm6NdZ7oloB0vbaAhHQJX6IjZ+QU51fZQoaAZHQHAP2yon8bdoB0upaAhHQJX6iDBdld11fZQoaAZHQHGJt0zTF2poB0uyaAhHQJX6kp6QeV91fZQoaAZHQHIX0FGG21FoB0vRaAhHQJX6mmYSg5B1fZQoaAZHQHIFTW07bL5oB0vLaAhHQJX7DOE/Spl1fZQoaAZHQGX3nGS6lLxoB03oA2gIR0CV+6PJJXhgdX2UKGgGR0ByDyKcd5praAdLwmgIR0CV+/52yLQ5dX2UKGgGR0Bzfyoo/iYLaAdL1GgIR0CV/AXpW3jNdX2UKGgGR0ByQnblA/s3aAdLz2gIR0CV/Ftmthd/dX2UKGgGR0BzkKq6vq1PaAdL2GgIR0CV/tgRbr1NdX2UKGgGR0ByDZl6JIlMaAdNAwJoCEdAlf8PZh8YynV9lChoBkdAcepI68xsVWgHS8xoCEdAlgB2ois4k3V9lChoBkdAcVOab4Ju22gHS5loCEdAlgCGwzLwF3V9lChoBkdAcH7xFy7wrmgHS7poCEdAlgDFp0wJxHV9lChoBkdAc7769CeEqWgHS7doCEdAlgEE8V58jXV9lChoBkdAcaWVp9JBgWgHS7poCEdAlgEswQDmsHV9lChoBkdAcxZdE9dNWWgHS7xoCEdAlgE4OtnwonV9lChoBkdAbmtwrDqGDmgHS5hoCEdAlgFqT4cm0HV9lChoBkdAb7h5u63AmGgHS61oCEdAlgG/JaJQ+HV9lChoBkdAcu8OsDGLk2gHS61oCEdAlgJrXpW3jXV9lChoBkdAcZZ6Ymb9ZWgHS85oCEdAlgMuqebut3V9lChoBkdAZAtMt9QXRGgHTegDaAhHQJYDOBy0a611fZQoaAZHQHDlBrN4Z/FoB0udaAhHQJYEMoRZlnR1fZQoaAZHQHGdvYODrZ9oB0uWaAhHQJYFRF1B+nZ1fZQoaAZHQGVEbPhQ3xZoB03oA2gIR0CWBYtoi9qUdX2UKGgGR0Byj/DDTBqLaAdL0mgIR0CWBbVEd/8VdX2UKGgGR0BxwAcrAgxKaAdLnWgIR0CWBe2LYPGydX2UKGgGR0ByWVSYPXkHaAdLsGgIR0CWBf8QZn+RdX2UKGgGR0ByHEN2C/XYaAdLkmgIR0CWBjqKxcFAdX2UKGgGR0BwqDBXS0BwaAdLs2gIR0CWBt5FPSDzdX2UKGgGR0B0Aqx8lXzUaAdL1GgIR0CWB5z5oGpudX2UKGgGR0ByZJc/t6X0aAdL1GgIR0CWB6ornTy8dX2UKGgGR0BwjHqB3A2yaAdLpWgIR0CWCBEYfnwHdX2UKGgGR0ByPmV+qioLaAdL1mgIR0CWCN+UhV2idX2UKGgGR0BxgAnhKlHjaAdLm2gIR0CWCNzkp7TldX2UKGgGR0BjAgKF7D2raAdN6ANoCEdAlgjpblijL3V9lChoBkdAcsah6By0bGgHS9poCEdAlgmghGH58HV9lChoBkdAcS5wHJLdvmgHS51oCEdAlgoMxO+IuXV9lChoBkdAcHmmlImPYGgHS5toCEdAlgolDBuXNXV9lChoBkdAcG6g3tKIzmgHS7FoCEdAlgpdgfEGaHV9lChoBkdAcHMuDSPU8WgHS5loCEdAlgpbaM72c3V9lChoBkdAc00U6gdwN2gHS7VoCEdAlgsHTmW+oXV9lChoBkdAcUbTpxFRYWgHS5doCEdAlgsgjD8+A3V9lChoBkdAb0a8NhE0BWgHS49oCEdAlguTvqkdm3V9lChoBkdAc47YcvM8o2gHS9BoCEdAlgwDZcs19HV9lChoBkdAccrIznA6+2gHS6poCEdAlgxQ3o9s8HV9lChoBkdAc0jV7x/d7GgHS6toCEdAlgy+ejEehnV9lChoBkdAcrCPyTY/V2gHS6hoCEdAlg1aySmqHXV9lChoBkdAcvjxZdOZcGgHS8RoCEdAlg43OfNA1XV9lChoBkdAch3MAWBSUGgHS89oCEdAlg6TVMEidXV9lChoBkdAcHOcsDnvD2gHS6toCEdAlg7pZjhDPXV9lChoBkdAchCgjhUBGWgHS7loCEdAlg+WyC4Bm3V9lChoBkdAc3Bo6S1VpGgHS89oCEdAlg+7/Khcq3V9lChoBkdAcougLqlgt2gHTfcBaAhHQJYP1fWtlqd1fZQoaAZHQHE1grUb1h9oB0u7aAhHQJYP+/xlQMx1fZQoaAZHQHFYuLWI42loB0ujaAhHQJYQKS+xnnN1fZQoaAZHQHDkKreZXuFoB0uZaAhHQJYQ/KRuCPJ1fZQoaAZHQHJVQhfShJ1oB0vbaAhHQJYRDhrFfiR1fZQoaAZHQHHh/bblA/toB0uYaAhHQJYRWD0163R1fZQoaAZHQHCoMvh60IFoB0u2aAhHQJYRaAoXsPd1fZQoaAZHQHHUBDkU9IRoB0vOaAhHQJYRfq+rU9Z1fZQoaAZHQHEbc1Gb1AZoB0uOaAhHQJYTTXI2fkF1fZQoaAZHQHDPqSkj5bhoB0vGaAhHQJYUVkUbkwN1fZQoaAZHQHBys1wYLstoB0uraAhHQJYVMOH31z11fZQoaAZHQG8b93r2QGRoB0umaAhHQJYV/Gecx0x1fZQoaAZHQHK0DJIUahpoB0vOaAhHQJYWW2CuloF1fZQoaAZHQHJC1jurp7loB0u2aAhHQJYWZqFh5Pd1fZQoaAZHQGZrUY0l7dBoB03oA2gIR0CWFw5hBqsVdX2UKGgGR0BwxcVM23rlaAdLvGgIR0CWFwurp7kXdX2UKGgGR0Bx6fQ5WBBiaAdLyGgIR0CWF6NmUW2xdX2UKGgGR0BzF88xKxs3aAdLu2gIR0CWGAseGO+7dX2UKGgGR0BxZ/geii7DaAdLvGgIR0CWGCSPEKmbdX2UKGgGR0BzUlT/ACXAaAdLuWgIR0CWGHIre67NdX2UKGgGR0ByTN77bcoIaAdLzGgIR0CWGPxDLKV6dX2UKGgGR0BwHwFotcv/aAdLnmgIR0CWGUhvR7Z4dX2UKGgGR0Bx3L5qM3qBaAdL2mgIR0CWGW531SOzdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 620,
55
+ "n_steps": 1024,
56
+ "gamma": 0.99,
57
+ "gae_lambda": 0.97,
58
+ "ent_coef": 0.002,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 10,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
81
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 16,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9TqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f0a25c1edd3a2c1e6ff2b47e5aa3553666ffde5e51b1855e9dd123a031152d6
3
+ size 88490
ppo-LunarLander-v2-2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:712d706edd7fe721d5273d455765b10514de474c5b140a7d754c87c75d16ec17
3
+ size 43762
ppo-LunarLander-v2-2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2-2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 276.2015524115749, "std_reward": 23.069780629260052, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-20T21:15:07.405886"}
 
1
+ {"mean_reward": 265.7109836984182, "std_reward": 13.08426778623371, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-20T21:54:28.533958"}