{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78004586c040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705960004932535054, "learning_rate": 0.0007880993941131103, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEt7dqtYB/+MAWyUS1eMAXSUR0CeMKOCXhOydX2UKGgGR0Bx2ReWv8qGaAdLmmgIR0CeMSU7CBPLdX2UKGgGR0Bx3IJu2qkuaAdLz2gIR0CeMcHzH0btdX2UKGgGR0BysIGhVU++aAdLu2gIR0CeMnyu6mO3dX2UKGgGR0ByowxCY1HfaAdLrWgIR0CeMoUYbbUPdX2UKGgGR0BymoXm/336aAdL0mgIR0CeMpkB0ZFYdX2UKGgGR0BxQILVnVXnaAdLsmgIR0CeMrHjIaLodX2UKGgGR0Bz6qQIUrTZaAdLtmgIR0CeMseNkvsadX2UKGgGR0Bx2GNn5BToaAdLwmgIR0CeMtPpY9xIdX2UKGgGR0Bwor7vXsgMaAdLl2gIR0CeMuScslLOdX2UKGgGR0Bzv2HARChOaAdL3GgIR0CeMybvPToddX2UKGgGR0BxkPLmp2lmaAdLnmgIR0CeM4HoouwpdX2UKGgGR0BwXTx2B8QaaAdLo2gIR0CejmLb5/LDdX2UKGgGR0ByfnH6uW8iaAdLzGgIR0CejnkCFK02dX2UKGgGR0BwzjDiwSrYaAdLwWgIR0CejskOI68ydX2UKGgGR0BxfT4zrNW3aAdLmWgIR0CejvTH80k4dX2UKGgGR0ByOTcUM5OraAdLjGgIR0Cej03i704BdX2UKGgGR0B0BWE/SpiraAdL5WgIR0CekHIv8IiUdX2UKGgGR0By+XDNyHVPaAdL8mgIR0CekIWNFSbZdX2UKGgGR0ByQaLUCq6waAdLj2gIR0CekMXN1QqJdX2UKGgGR0BvSB0uDjBEaAdLl2gIR0CekWUL2HtXdX2UKGgGR0BzK/b0voNeaAdLu2gIR0CekXaIeo1ldX2UKGgGR0BxsIqslsxgaAdLt2gIR0CekcVmBe5XdX2UKGgGR0ByftJ6IFeOaAdLxGgIR0Cekb1WbPQfdX2UKGgGR0BwoEu7HyVfaAdLlmgIR0CekdKLbYbsdX2UKGgGR0BxUcT8HfMwaAdLz2gIR0Cekd2606YFdX2UKGgGR0ByrfYsd1dPaAdLzWgIR0CekgJ1q33IdX2UKGgGR0B0KJ0mtyPuaAdL6WgIR0CekrDfm9xqdX2UKGgGR0BxJfLU1AJLaAdLsWgIR0CeksBAv+OwdX2UKGgGR0Bz1zbcoH9naAdLvGgIR0CekzxJNCZ4dX2UKGgGR0By2fyup0fYaAdL0mgIR0Cek2N7SiM6dX2UKGgGR0Bw/TnJT2nLaAdLxmgIR0Cek5C7K7qZdX2UKGgGR0BxQ5PWQOnVaAdLpmgIR0CelAB7NSqEdX2UKGgGR0By0OU6gdwOaAdL5GgIR0CelIbB42S/dX2UKGgGR0ByxSLHdXT3aAdL2GgIR0CelQEkjX4CdX2UKGgGR0BybtuNxVABaAdLy2gIR0CelRDYh+vydX2UKGgGR0BwN+8tf5UMaAdLnmgIR0CelRcVxjridX2UKGgGR0ByJqlQ/HHWaAdLr2gIR0CelSUnG828dX2UKGgGR0BvckJtzjm0aAdLsWgIR0CelYIwM6RydX2UKGgGR0ByypmpVCHAaAdLrWgIR0CelZ7lJYkndX2UKGgGR0Bx7eXfIjnnaAdLuWgIR0Celbh60IC2dX2UKGgGR0By+vF5v99/aAdL1mgIR0Celd0hNdqtdX2UKGgGR0B0STAoG6f8aAdLyGgIR0CeleQtBfKIdX2UKGgGR0BwNqZZ0SyuaAdLo2gIR0Celhm6oVEedX2UKGgGR0BSYi+g13t8aAdLj2gIR0Celn1R+BpYdX2UKGgGR0Bu3/d9Dx9YaAdLpWgIR0CelsRgJC0GdX2UKGgGR0BzSw+aBqbjaAdL0mgIR0CelxCxeLNwdX2UKGgGR0BzMLJ6po9LaAdLyGgIR0Cel1Gff4yodX2UKGgGR0ByEGCFsYVJaAdLq2gIR0Cel3WykbgkdX2UKGgGR0BvKYtL+PzWaAdLnGgIR0CemDvPkaMrdX2UKGgGR0Bx38ePq9oOaAdLhGgIR0CemEncL0BfdX2UKGgGR0Bzw3f8/D+BaAdLxmgIR0CemIsfq5bydX2UKGgGR0BwpfCN0eU7aAdLsGgIR0CemJASnLq2dX2UKGgGR0Bw6yRLbpNcaAdLr2gIR0CemJp3os7NdX2UKGgGR0BzrgD7qIJraAdLzmgIR0CemVGX5WRzdX2UKGgGR0Bxjj8m8dxRaAdLrWgIR0CemWBtDUmVdX2UKGgGR0BzfmAkLQXzaAdL1WgIR0Cemdk4WDYidX2UKGgGR0ByWEUBXCCSaAdLyWgIR0CemkAU+LWJdX2UKGgGR0BxZLzSThYOaAdLr2gIR0CemnFXaJyidX2UKGgGR0BzM2TGHYYjaAdL3WgIR0CemnP1tfoidX2UKGgGR0B0VH4M4LkTaAdL6WgIR0CemoV2A5JcdX2UKGgGR0BzCz3TNMXaaAdLw2gIR0CempVII4VAdX2UKGgGR0BwhN7v5P/JaAdLnmgIR0CemsjnFHawdX2UKGgGR0BxCGfkFOfvaAdLtWgIR0CemxMYdhiLdX2UKGgGR0BGjeVkc0cfaAdLkGgIR0Cemzt7KJVKdX2UKGgGR0BzMeYAsCkoaAdL1GgIR0Cem27K7qY7dX2UKGgGR0BwlURdyDIzaAdLo2gIR0Cem4syi22HdX2UKGgGR0Bwl3bRF7UoaAdLrWgIR0CenAw4KhL5dX2UKGgGR0Bx520Re1KHaAdLr2gIR0CenCcy31BddX2UKGgGR0BwPL0z0pVkaAdLtGgIR0CenEBtk4FSdX2UKGgGR0Bxsc7muDBeaAdLsWgIR0CenPw3o9s8dX2UKGgGR0A5E7jkuHvdaAdLYmgIR0CenW5XEIgOdX2UKGgGR0ByIR0zTF2naAdLtGgIR0CenX58jRlZdX2UKGgGR0ByWhYA80UHaAdLoWgIR0CenaiXpnpTdX2UKGgGR0BymkhHLA58aAdL2GgIR0CenbZUT+NtdX2UKGgGR0ByzXT1CgK4aAdLuGgIR0CenfFvhqCZdX2UKGgGR0ByBkXXRPXTaAdLomgIR0CengYQ8OkMdX2UKGgGR0Bxy3PY4ACGaAdLsGgIR0CengZGrjo7dX2UKGgGR0BzJNFAmiQDaAdLv2gIR0CenkAvcrRTdX2UKGgGR0ByJiHCXQdCaAdLyWgIR0Ceno8ma6SUdX2UKGgGR0Bus34VRDTjaAdLqmgIR0CenvvKEFnqdX2UKGgGR0ByLjRtxdY5aAdLyWgIR0Cen0fra/RFdX2UKGgGR0BySq6g/TsqaAdL3mgIR0Cen4seGO+7dX2UKGgGR0BwtK3azu4PaAdLrmgIR0Cen6pu/DcedX2UKGgGR0ByrulP8AJcaAdLx2gIR0CeoBZkTYdydX2UKGgGR0Bx/pYgaFVUaAdLxGgIR0CeoDC2tuDSdX2UKGgGR0BPEd87ZFodaAdLjWgIR0CeoNlpoK2KdX2UKGgGR0BwFT3oLXtjaAdLk2gIR0CeoPmALApKdX2UKGgGR0BxYH6i0v4/aAdLq2gIR0CeoSKSgXdkdX2UKGgGR0ByT2nsLORlaAdLvGgIR0CeoWwqAjIJdX2UKGgGR0BzoHA2ycCpaAdL4mgIR0CeoYFOO802dX2UKGgGR0ByVf101ZTyaAdLy2gIR0CeoYAEMb3odX2UKGgGR0Bx9cj4YaYNaAdLy2gIR0CeoY74zrNXdX2UKGgGR0ByVfvd/J/5aAdLu2gIR0CeoaitaIN3dX2UKGgGR0BxjU6T4cm0aAdLxWgIR0CeohymQ8wIdX2UKGgGR0BzA9h1DBuXaAdLpWgIR0CeojRs/IKddX2UKGgGR0Bx9od1dPcjaAdLwWgIR0Ceolm3OObRdX2UKGgGR0BxNOVxCIDYaAdLrmgIR0CeouuSOinHdX2UKGgGR0BuHtVcUucuaAdLmGgIR0CeoxlpGnXNdX2UKGgGR0By1Bi9Zid8aAdLrmgIR0Ceo28pkPMCdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.996562587958531, "gae_lambda": 0.9633062552672708, "ent_coef": 0.0017624408201107578, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/NgJAuPSlLhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9J0w6P1dW9hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}