--- license: llama2 datasets: - gair-prox/open-web-math-pro language: - en base_model: - codellama/CodeLlama-7b-hf --- # CodeLlama-7B-ProXMath
[ArXiv](http://arxiv.org/abs/2409.17115) | [Data: OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **CodeLlama-7B-ProXMath** is a math-adapted language model that is continually pre-trained on [OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) (a refined version by ProX) for **10**B tokens. ## Evaluations ProX models are evaluated on 9 common math reasoning benchmarks. | Model | asdiv | gsm8k | mathqa | mawps | minerva_math | mmlu_stem | sat_math | svamp | tabmwp | average | |-----------------------|:--------:|:--------:|:--------:|:--------:|:------------:|:---------:|:--------:|:--------:|:--------:|:--------:| | CodeLlama-7B | 50.7 | 11.8 | 14.3 | 62.6 | 5.0 | 20.4 | 21.9 | 44.2 | 30.6 | 29.1 | | CodeLlama-7B-ProXMath | **67.9** | **35.6** | **38.9** | **82.7** | **17.6** | **42.6** | **62.5** | **55.8** | **41.3** | **49.4** | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```