{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff3e6fd7c80>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686711928071604916, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4ajYPhCg0TrrzxU/4ajYPhCg0TrrzxU/4ajYPhCg0TrrzxU/4ajYPhCg0TrrzxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAA5ujPoC8mT+Phl2/EVpgP+pbZr7B8cC/xl2Av7fKAD7q3X8/CQ+pv9yaw7+W3Kq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADhqNg+EKDROuvPFT+Mlzc8+vs/uqdSzTvhqNg+EKDROuvPFT+Mlzc8+vs/uqdSzTvhqNg+EKDROuvPFT+Mlzc8+vs/uqdSzTvhqNg+EKDROuvPFT+Mlzc8+vs/uqdSzTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42316344 0.00159931 0.5852038 ]\n [0.42316344 0.00159931 0.5852038 ]\n [0.42316344 0.00159931 0.5852038 ]\n [0.42316344 0.00159931 0.5852038 ]]", "desired_goal": "[[ 0.31954202 1.2010651 -0.86533445]\n [ 0.8763743 -0.22496 -1.5073777 ]\n [-1.0028617 0.1257733 0.9994799 ]\n [-1.3207713 -1.5281634 -0.3337142 ]]", "observation": "[[ 0.42316344 0.00159931 0.5852038 0.01120557 -0.00073236 0.00626596]\n [ 0.42316344 0.00159931 0.5852038 0.01120557 -0.00073236 0.00626596]\n [ 0.42316344 0.00159931 0.5852038 0.01120557 -0.00073236 0.00626596]\n [ 0.42316344 0.00159931 0.5852038 0.01120557 -0.00073236 0.00626596]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr4w9vdp/8j3qO9o9Or6UPQ213r0sIVE+AdJ+PTOSBz44Ww0+DGG9PQJ4jz2uNv89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04627674 0.11840792 0.10655959]\n [ 0.07262845 -0.10874376 0.2042281 ]\n [ 0.06221199 0.13239364 0.13804328]\n [ 0.09247026 0.07005312 0.12461601]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE4JV9fI787+UhpRSlIwBbJRLMowBdJRHQLz1Vttygf51fZQoaAZoCWgPQwh4msx4W2n2v5SGlFKUaBVLMmgWR0C89QLaufVadX2UKGgGaAloD0MI3T8WokMg8L+UhpRSlGgVSzJoFkdAvPSx3Ux20XV9lChoBmgJaA9DCIp0P6cgP/O/lIaUUpRoFUsyaBZHQLz0ZJUHY6J1fZQoaAZoCWgPQwj4UQ37PXHyv5SGlFKUaBVLMmgWR0C89eaya/h3dX2UKGgGaAloD0MIRImWPJ7W97+UhpRSlGgVSzJoFkdAvPWSxkd3jnV9lChoBmgJaA9DCCVbXU4JCPK/lIaUUpRoFUsyaBZHQLz1QattALR1fZQoaAZoCWgPQwhszywJUNP/v5SGlFKUaBVLMmgWR0C89PSNGViXdX2UKGgGaAloD0MIaLCp86j4/L+UhpRSlGgVSzJoFkdAvPZ40IkZ8HV9lChoBmgJaA9DCKlorP2dbfm/lIaUUpRoFUsyaBZHQLz2JOYplSV1fZQoaAZoCWgPQwhW1cvvNLkDwJSGlFKUaBVLMmgWR0C89dPFR51OdX2UKGgGaAloD0MIYLAbti1K8b+UhpRSlGgVSzJoFkdAvPWGe4Cp33V9lChoBmgJaA9DCAQEc/T4vfS/lIaUUpRoFUsyaBZHQLz3D1K5Cnh1fZQoaAZoCWgPQwh+p8mMt5X+v5SGlFKUaBVLMmgWR0C89rthZyMldX2UKGgGaAloD0MI9BWkGYsm+b+UhpRSlGgVSzJoFkdAvPZqQo1DSnV9lChoBmgJaA9DCHHHm/wWHfm/lIaUUpRoFUsyaBZHQLz2HObiIcl1fZQoaAZoCWgPQwi8kuS5vg/7v5SGlFKUaBVLMmgWR0C8959hVlwtdX2UKGgGaAloD0MIEeD0Lt4P/r+UhpRSlGgVSzJoFkdAvPdLiEQGwHV9lChoBmgJaA9DCAXfNH12IAHAlIaUUpRoFUsyaBZHQLz2+m/nGKh1fZQoaAZoCWgPQwi1F9F2TF3yv5SGlFKUaBVLMmgWR0C89q1JHy3DdX2UKGgGaAloD0MI3q0s0Vkm9b+UhpRSlGgVSzJoFkdAvPgzYNAkcHV9lChoBmgJaA9DCGR5Vz1gHvW/lIaUUpRoFUsyaBZHQLz332/SH/N1fZQoaAZoCWgPQwi8BKc+kLzxv5SGlFKUaBVLMmgWR0C8945ZntfHdX2UKGgGaAloD0MIKxIT1PCt8L+UhpRSlGgVSzJoFkdAvPdBFRYRunV9lChoBmgJaA9DCPMFLSRgNPS/lIaUUpRoFUsyaBZHQLz4xKtxMnJ1fZQoaAZoCWgPQwhzZVBtcKIDwJSGlFKUaBVLMmgWR0C8+HDPOY6XdX2UKGgGaAloD0MIxAq3fCTl87+UhpRSlGgVSzJoFkdAvPgfwAlv63V9lChoBmgJaA9DCGjLuRRXVfG/lIaUUpRoFUsyaBZHQLz30l2NedF1fZQoaAZoCWgPQwhqTfOOU1QBwJSGlFKUaBVLMmgWR0C8+VrLhaTwdX2UKGgGaAloD0MIBi0kYHS5/b+UhpRSlGgVSzJoFkdAvPkG2gFotnV9lChoBmgJaA9DCKKW5lYIK/i/lIaUUpRoFUsyaBZHQLz4tbBoEjh1fZQoaAZoCWgPQwgM5q+QubLzv5SGlFKUaBVLMmgWR0C8+GhXnyNGdX2UKGgGaAloD0MIokW28/2U+L+UhpRSlGgVSzJoFkdAvPnosasIV3V9lChoBmgJaA9DCF1RSghWVfq/lIaUUpRoFUsyaBZHQLz5lNLlFMJ1fZQoaAZoCWgPQwgpP6n26Xj3v5SGlFKUaBVLMmgWR0C8+UO18b71dX2UKGgGaAloD0MIjj7mAwId9L+UhpRSlGgVSzJoFkdAvPj2dupCKXV9lChoBmgJaA9DCIzXvKqzWvm/lIaUUpRoFUsyaBZHQLz6fgUUO/d1fZQoaAZoCWgPQwhnDkktlEzwv5SGlFKUaBVLMmgWR0C8+ioZhrnDdX2UKGgGaAloD0MI/5dr0QI0BcCUhpRSlGgVSzJoFkdAvPnZA9mpVHV9lChoBmgJaA9DCKfMzTeie/K/lIaUUpRoFUsyaBZHQLz5i814xDd1fZQoaAZoCWgPQwjH8q56wDz0v5SGlFKUaBVLMmgWR0C8+wdmpVCHdX2UKGgGaAloD0MI4zjwarmz7b+UhpRSlGgVSzJoFkdAvPqzeXRgJHV9lChoBmgJaA9DCLWn5JzYQ/y/lIaUUpRoFUsyaBZHQLz6Yjz7MxJ1fZQoaAZoCWgPQwjDRIMUPMX/v5SGlFKUaBVLMmgWR0C8+hTaPCEYdX2UKGgGaAloD0MIXHUdqinJ+b+UhpRSlGgVSzJoFkdAvPuUy44IbHV9lChoBmgJaA9DCPBquTMTDP6/lIaUUpRoFUsyaBZHQLz7QLuQZGd1fZQoaAZoCWgPQwgyVTAqqVP6v5SGlFKUaBVLMmgWR0C8+u+jua4MdX2UKGgGaAloD0MIH9YbtcK0A8CUhpRSlGgVSzJoFkdAvPqiUliSaHV9lChoBmgJaA9DCGy0HOih9vu/lIaUUpRoFUsyaBZHQLz8H36hxo91fZQoaAZoCWgPQwhC7Eyh8xr2v5SGlFKUaBVLMmgWR0C8+8t0NjLCdX2UKGgGaAloD0MIFCaMZmW7/L+UhpRSlGgVSzJoFkdAvPt6Tkhib3V9lChoBmgJaA9DCIYCtoMRO/a/lIaUUpRoFUsyaBZHQLz7LPPcBU91fZQoaAZoCWgPQwhjDoKOVrX6v5SGlFKUaBVLMmgWR0C8/Ky2lVLjdX2UKGgGaAloD0MIQSswZHUr+r+UhpRSlGgVSzJoFkdAvPxYtBfKIXV9lChoBmgJaA9DCMAlAP+UavO/lIaUUpRoFUsyaBZHQLz8B371qWV1fZQoaAZoCWgPQwhPlIRE2kYBwJSGlFKUaBVLMmgWR0C8+7odp7C0dX2UKGgGaAloD0MI97AXCthOBcCUhpRSlGgVSzJoFkdAvP1IM1CPZXV9lChoBmgJaA9DCGAdxw+VRvi/lIaUUpRoFUsyaBZHQLz89DHwPRR1fZQoaAZoCWgPQwh0YDlCBjL8v5SGlFKUaBVLMmgWR0C8/KMjiXIEdX2UKGgGaAloD0MIylAVU+kn/b+UhpRSlGgVSzJoFkdAvPxWBpYcN3V9lChoBmgJaA9DCNF14QfnE/6/lIaUUpRoFUsyaBZHQLz94cdYGMZ1fZQoaAZoCWgPQwhB1lOrry78v5SGlFKUaBVLMmgWR0C8/Y3nEETydX2UKGgGaAloD0MI+RIqOLxg9L+UhpRSlGgVSzJoFkdAvP08xM36ynV9lChoBmgJaA9DCBYx7DAmnQLAlIaUUpRoFUsyaBZHQLz872q1gIB1fZQoaAZoCWgPQwhNZryt9Nr4v5SGlFKUaBVLMmgWR0C8/sF6E8JVdX2UKGgGaAloD0MItf8B1qod+7+UhpRSlGgVSzJoFkdAvP5uAy2x6nV9lChoBmgJaA9DCNszSwLUlP2/lIaUUpRoFUsyaBZHQLz+HSWJJoV1fZQoaAZoCWgPQwhzuiwmNl/9v5SGlFKUaBVLMmgWR0C8/dBArxy5dX2UKGgGaAloD0MIzjl4JjSJA8CUhpRSlGgVSzJoFkdAvP+zwrlNlHV9lChoBmgJaA9DCKgck8X9h/u/lIaUUpRoFUsyaBZHQLz/YCnxaxJ1fZQoaAZoCWgPQwjr46HvbqX1v5SGlFKUaBVLMmgWR0C8/w90/4ZddX2UKGgGaAloD0MIpmQ5CaVvAsCUhpRSlGgVSzJoFkdAvP7Cp6yB1HV9lChoBmgJaA9DCE2EDU+v1Pi/lIaUUpRoFUsyaBZHQL0AnMwUQCl1fZQoaAZoCWgPQwiscwzIXm/+v5SGlFKUaBVLMmgWR0C9AElq8DjjdX2UKGgGaAloD0MIoFT7dDwm/r+UhpRSlGgVSzJoFkdAvP/4uL74z3V9lChoBmgJaA9DCHr7c9GQsfe/lIaUUpRoFUsyaBZHQLz/q6kZaV51fZQoaAZoCWgPQwgbvK/KhUr7v5SGlFKUaBVLMmgWR0C9AZhLkCFLdX2UKGgGaAloD0MIPneC/dc5A8CUhpRSlGgVSzJoFkdAvQFEw1zhgnV9lChoBmgJaA9DCM2Pv7Soj/6/lIaUUpRoFUsyaBZHQL0A9B0p3HJ1fZQoaAZoCWgPQwh7+gj84ccAwJSGlFKUaBVLMmgWR0C9AKc3Q2MsdX2UKGgGaAloD0MI0LNZ9bl6AMCUhpRSlGgVSzJoFkdAvQKYZCOWB3V9lChoBmgJaA9DCJ1LcVXZ1wHAlIaUUpRoFUsyaBZHQL0CRSdvsJJ1fZQoaAZoCWgPQwjtn6cBg6T/v5SGlFKUaBVLMmgWR0C9AfRjJ+2FdX2UKGgGaAloD0MIzxPP2QJC/L+UhpRSlGgVSzJoFkdAvQGnqoqCpXV9lChoBmgJaA9DCHHJcad0sPO/lIaUUpRoFUsyaBZHQL0Dowg1WKd1fZQoaAZoCWgPQwjzcth9x/AGwJSGlFKUaBVLMmgWR0C9A0+801qGdX2UKGgGaAloD0MIQiPYuP4d+7+UhpRSlGgVSzJoFkdAvQL/Gza9K3V9lChoBmgJaA9DCIzc09UdywbAlIaUUpRoFUsyaBZHQL0CsmOU+s51fZQoaAZoCWgPQwj+DkWBPlEDwJSGlFKUaBVLMmgWR0C9BKMKw6hhdX2UKGgGaAloD0MINSiaB7AIAMCUhpRSlGgVSzJoFkdAvQRPKJVKgHV9lChoBmgJaA9DCNh9x/DYz/u/lIaUUpRoFUsyaBZHQL0D/eyAxzt1fZQoaAZoCWgPQwgj2/l+ajwGwJSGlFKUaBVLMmgWR0C9A7C8OCoTdX2UKGgGaAloD0MIUaIlj6clAMCUhpRSlGgVSzJoFkdAvQUzADaGpXV9lChoBmgJaA9DCOnuOhvyz/2/lIaUUpRoFUsyaBZHQL0E3xCpm291fZQoaAZoCWgPQwjNzTeie9bzv5SGlFKUaBVLMmgWR0C9BI35SFXadX2UKGgGaAloD0MIoz1eSIcH/L+UhpRSlGgVSzJoFkdAvQRApkPMCHV9lChoBmgJaA9DCPCICtXNRfe/lIaUUpRoFUsyaBZHQL0FvzhxYJV1fZQoaAZoCWgPQwibPGU1Xc8BwJSGlFKUaBVLMmgWR0C9BWtDhLoPdX2UKGgGaAloD0MIuf5dnznr/7+UhpRSlGgVSzJoFkdAvQUaI/JNkHV9lChoBmgJaA9DCHYaaam8Hfe/lIaUUpRoFUsyaBZHQL0EzOcUdrB1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}