File size: 23,865 Bytes
e699320 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7005
- loss:MultipleNegativesRankingLoss_with_logging
base_model: Alibaba-NLP/gte-large-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_accuracy@30
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_precision@30
- cosine_precision@50
- cosine_precision@100
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_recall@30
- cosine_recall@50
- cosine_recall@100
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_accuracy@30
- dot_accuracy@50
- dot_accuracy@100
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_precision@30
- dot_precision@50
- dot_precision@100
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_recall@30
- dot_recall@50
- dot_recall@100
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: What are the client's target industries?
sentences:
- 'Right.
And also, you know, heavy equipment.
Okay, I understand.'
- 'And there''s a full spectrum.
It''s all about your order offering.
Right.
If you''re offering, like, a full design platform where now we have way more engagement
in terms of employee being able to get it from one place, and that could be.
That could take away again, like, my pitch would be basically being on the show.'
- 'Our competitors are billion dollar corporations.
So Experian Epsilon, which is owned by IPG or publicis, big french company, Axiom,
which is owned by IPG.
Inter public group, huge agency.
So it''s nice competing against multibillion dollar corporations because they
move at the speed of the Statue of Liberty.'
- source_sentence: What is the strategy for heating products?
sentences:
- 'Then when you go in to take a look, you say, okay, I''ve got this.
Now I need to record my test results so that we do down here.
And we say, okay, this is me, so I''ll pick myself.
And here we go.
So once you''re in here, you say, okay, it''s inspector me.'
- 'I don''t think we make any margin on these products.
I''m going to put it on here, though, because I want to add different ones.
So three in one and then.
Underfloor heating?'
- 'How are others using it?
Use cases like.
Yeah, for example, we have one, one partner, there''s climbo.'
- source_sentence: What feature did Aseel request regarding budget information display?
sentences:
- 'So you want to do your west coast.
Do you want to do 10:00 a.m.
on the morning of 13th?'
- 'But the only thing that I just was thinking about is, for example, if I was a
head teacher and I''m about to approve an order and obviously I go and click on
the three dots and it tells me my geo budget department by GL budget and obviously
tells you what your total budget is, your spend and what''s remaining.
Is there a way in which I can see what actually went under proof expenditure?
So it should be.
So to see how much has been committed against the budget?'
- 'Awesome.
And speaking of releases, is there any way I''m not getting the.
And I''m sure Chris probably is.'
- source_sentence: Does the customer have any other EAP-like resources available?
sentences:
- 'Every time I make a post, I get.
I get just a ton of inquiries, you know?
And we''re just.
We''re doing a bunch of cool operational stuff right now, so we''re just trying
to get that all figured out, you know?
Yeah.
Well, hey, let me give you a rundown of a couple things I''m doing with, like,
people in your kind of peripheral.
Just so you know what we''re trying to do to boost the voices of you and agencies
like you.'
- 'So we need Kim and Manju.
We need to account that for production downtime for on 16th.
No cutover plan.'
- 'They''re thinking, well, there we have them already, and they offer all these
things.
This is pretty great, you know, because we also use, so we have Voya life insurance,
and through Voya, they offer a couple eap type of resources, too.
Right.
So we have additional assistance with another program.
Right.
But with our eap, which is through Magellan, they would just usually would just
be better than the other comparisons when it came down to it.'
- source_sentence: What was Nathan's response to the initial proposal from Global
Air U?
sentences:
- But I was listening to everything that you were talking about.
- 'And hopefully that should update now in your account in a second.
Yeah.
If you give that a go now, you should see all the way to August 2025.'
- 'I don''t see on the proposal.
I don''t see anything class or the class related.
Um.
Oh, so for the course.
No, no.'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.32793959007551243
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.48975188781014023
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5663430420711975
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6612729234088457
name: Cosine Accuracy@10
- type: cosine_accuracy@30
value: 0.7669902912621359
name: Cosine Accuracy@30
- type: cosine_accuracy@50
value: 0.8155339805825242
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.8597626752966558
name: Cosine Accuracy@100
- type: cosine_precision@1
value: 0.32793959007551243
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1902193455591514
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13829557713052856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08716289104638619
name: Cosine Precision@10
- type: cosine_precision@30
value: 0.038439410284070476
name: Cosine Precision@30
- type: cosine_precision@50
value: 0.025717367853290186
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.014282632146709814
name: Cosine Precision@100
- type: cosine_recall@1
value: 0.19877399359600004
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.32606462218112703
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.39100529100529097
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.475571479940412
name: Cosine Recall@10
- type: cosine_recall@30
value: 0.6031369325867708
name: Cosine Recall@30
- type: cosine_recall@50
value: 0.660217290799815
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.7195099398982894
name: Cosine Recall@100
- type: cosine_ndcg@10
value: 0.3784769275629581
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.42950420369514186
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3193224907975288
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.3290183387270766
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.4886731391585761
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5717367853290184
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6634304207119741
name: Dot Accuracy@10
- type: dot_accuracy@30
value: 0.7669902912621359
name: Dot Accuracy@30
- type: dot_accuracy@50
value: 0.8133764832793959
name: Dot Accuracy@50
- type: dot_accuracy@100
value: 0.8619201725997843
name: Dot Accuracy@100
- type: dot_precision@1
value: 0.3290183387270766
name: Dot Precision@1
- type: dot_precision@3
value: 0.18985976267529667
name: Dot Precision@3
- type: dot_precision@5
value: 0.1387270765911543
name: Dot Precision@5
- type: dot_precision@10
value: 0.08737864077669903
name: Dot Precision@10
- type: dot_precision@30
value: 0.038511326860841424
name: Dot Precision@30
- type: dot_precision@50
value: 0.025652642934196335
name: Dot Precision@50
- type: dot_precision@100
value: 0.0143042071197411
name: Dot Precision@100
- type: dot_recall@1
value: 0.19940326364274585
name: Dot Recall@1
- type: dot_recall@3
value: 0.32588483073919966
name: Dot Recall@3
- type: dot_recall@5
value: 0.39370216263420144
name: Dot Recall@5
- type: dot_recall@10
value: 0.4770997071967946
name: Dot Recall@10
- type: dot_recall@30
value: 0.6043595143918767
name: Dot Recall@30
- type: dot_recall@50
value: 0.659138542148251
name: Dot Recall@50
- type: dot_recall@100
value: 0.7219987671443983
name: Dot Recall@100
- type: dot_ndcg@10
value: 0.3791495475200093
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4305302991387128
name: Dot Mrr@10
- type: dot_map@100
value: 0.31951258454174397
name: Dot Map@100
---
# SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) <!-- at revision 104333d6af6f97649377c2afbde10a7704870c7b -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("model_3")
# Run inference
sentences = [
"What was Nathan's response to the initial proposal from Global Air U?",
"I don't see on the proposal.\nI don't see anything class or the class related.\nUm.\nOh, so for the course.\nNo, no.",
'And hopefully that should update now in your account in a second.\nYeah.\nIf you give that a go now, you should see all the way to August 2025.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:---------------------|:-----------|
| cosine_accuracy@1 | 0.3279 |
| cosine_accuracy@3 | 0.4898 |
| cosine_accuracy@5 | 0.5663 |
| cosine_accuracy@10 | 0.6613 |
| cosine_accuracy@30 | 0.767 |
| cosine_accuracy@50 | 0.8155 |
| cosine_accuracy@100 | 0.8598 |
| cosine_precision@1 | 0.3279 |
| cosine_precision@3 | 0.1902 |
| cosine_precision@5 | 0.1383 |
| cosine_precision@10 | 0.0872 |
| cosine_precision@30 | 0.0384 |
| cosine_precision@50 | 0.0257 |
| cosine_precision@100 | 0.0143 |
| cosine_recall@1 | 0.1988 |
| cosine_recall@3 | 0.3261 |
| cosine_recall@5 | 0.391 |
| cosine_recall@10 | 0.4756 |
| cosine_recall@30 | 0.6031 |
| cosine_recall@50 | 0.6602 |
| cosine_recall@100 | 0.7195 |
| cosine_ndcg@10 | 0.3785 |
| cosine_mrr@10 | 0.4295 |
| **cosine_map@100** | **0.3193** |
| dot_accuracy@1 | 0.329 |
| dot_accuracy@3 | 0.4887 |
| dot_accuracy@5 | 0.5717 |
| dot_accuracy@10 | 0.6634 |
| dot_accuracy@30 | 0.767 |
| dot_accuracy@50 | 0.8134 |
| dot_accuracy@100 | 0.8619 |
| dot_precision@1 | 0.329 |
| dot_precision@3 | 0.1899 |
| dot_precision@5 | 0.1387 |
| dot_precision@10 | 0.0874 |
| dot_precision@30 | 0.0385 |
| dot_precision@50 | 0.0257 |
| dot_precision@100 | 0.0143 |
| dot_recall@1 | 0.1994 |
| dot_recall@3 | 0.3259 |
| dot_recall@5 | 0.3937 |
| dot_recall@10 | 0.4771 |
| dot_recall@30 | 0.6044 |
| dot_recall@50 | 0.6591 |
| dot_recall@100 | 0.722 |
| dot_ndcg@10 | 0.3791 |
| dot_mrr@10 | 0.4305 |
| dot_map@100 | 0.3195 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 7,005 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 14.59 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 60.98 tokens</li><li>max: 170 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What progress has been made with setting up Snowflake share?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
| <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
| <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>Uh, and so now we just have to meet with Peter.<br>Peter is someone who I used to work with on, he used to work on, uh, syndicated data products.<br>So I used to work with him on that.</code> |
* Loss: <code>__main__.MultipleNegativesRankingLoss_with_logging</code>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `num_train_epochs`: 2
- `max_steps`: 1751
- `disable_tqdm`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 2
- `max_steps`: 1751
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 0.0114 | 20 | 0.2538 |
| 0.0228 | 40 | 0.2601 |
| 0.0342 | 60 | 0.2724 |
| 0.0457 | 80 | 0.2911 |
| 0.0571 | 100 | 0.2976 |
| 0.0685 | 120 | 0.3075 |
| 0.0799 | 140 | 0.3071 |
| 0.0913 | 160 | 0.3111 |
| 0.1027 | 180 | 0.3193 |
### Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |