File size: 23,865 Bytes
e699320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7005
- loss:MultipleNegativesRankingLoss_with_logging
base_model: Alibaba-NLP/gte-large-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_accuracy@30
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_precision@30
- cosine_precision@50
- cosine_precision@100
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_recall@30
- cosine_recall@50
- cosine_recall@100
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_accuracy@30
- dot_accuracy@50
- dot_accuracy@100
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_precision@30
- dot_precision@50
- dot_precision@100
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_recall@30
- dot_recall@50
- dot_recall@100
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: What are the client's target industries?
  sentences:
  - 'Right.

    And also, you know, heavy equipment.

    Okay, I understand.'
  - 'And there''s a full spectrum.

    It''s all about your order offering.

    Right.

    If you''re offering, like, a full design platform where now we have way more engagement
    in terms of employee being able to get it from one place, and that could be.

    That could take away again, like, my pitch would be basically being on the show.'
  - 'Our competitors are billion dollar corporations.

    So Experian Epsilon, which is owned by IPG or publicis, big french company, Axiom,
    which is owned by IPG.

    Inter public group, huge agency.

    So it''s nice competing against multibillion dollar corporations because they
    move at the speed of the Statue of Liberty.'
- source_sentence: What is the strategy for heating products?
  sentences:
  - 'Then when you go in to take a look, you say, okay, I''ve got this.

    Now I need to record my test results so that we do down here.

    And we say, okay, this is me, so I''ll pick myself.

    And here we go.

    So once you''re in here, you say, okay, it''s inspector me.'
  - 'I don''t think we make any margin on these products.

    I''m going to put it on here, though, because I want to add different ones.

    So three in one and then.

    Underfloor heating?'
  - 'How are others using it?

    Use cases like.

    Yeah, for example, we have one, one partner, there''s climbo.'
- source_sentence: What feature did Aseel request regarding budget information display?
  sentences:
  - 'So you want to do your west coast.

    Do you want to do 10:00 a.m.

    on the morning of 13th?'
  - 'But the only thing that I just was thinking about is, for example, if I was a
    head teacher and I''m about to approve an order and obviously I go and click on
    the three dots and it tells me my geo budget department by GL budget and obviously
    tells you what your total budget is, your spend and what''s remaining.

    Is there a way in which I can see what actually went under proof expenditure?

    So it should be.

    So to see how much has been committed against the budget?'
  - 'Awesome.

    And speaking of releases, is there any way I''m not getting the.

    And I''m sure Chris probably is.'
- source_sentence: Does the customer have any other EAP-like resources available?
  sentences:
  - 'Every time I make a post, I get.

    I get just a ton of inquiries, you know?

    And we''re just.

    We''re doing a bunch of cool operational stuff right now, so we''re just trying
    to get that all figured out, you know?

    Yeah.

    Well, hey, let me give you a rundown of a couple things I''m doing with, like,
    people in your kind of peripheral.

    Just so you know what we''re trying to do to boost the voices of you and agencies
    like you.'
  - 'So we need Kim and Manju.

    We need to account that for production downtime for on 16th.

    No cutover plan.'
  - 'They''re thinking, well, there we have them already, and they offer all these
    things.

    This is pretty great, you know, because we also use, so we have Voya life insurance,
    and through Voya, they offer a couple eap type of resources, too.

    Right.

    So we have additional assistance with another program.

    Right.

    But with our eap, which is through Magellan, they would just usually would just
    be better than the other comparisons when it came down to it.'
- source_sentence: What was Nathan's response to the initial proposal from Global
    Air U?
  sentences:
  - But I was listening to everything that you were talking about.
  - 'And hopefully that should update now in your account in a second.

    Yeah.

    If you give that a go now, you should see all the way to August 2025.'
  - 'I don''t see on the proposal.

    I don''t see anything class or the class related.

    Um.

    Oh, so for the course.

    No, no.'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.32793959007551243
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48975188781014023
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5663430420711975
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6612729234088457
      name: Cosine Accuracy@10
    - type: cosine_accuracy@30
      value: 0.7669902912621359
      name: Cosine Accuracy@30
    - type: cosine_accuracy@50
      value: 0.8155339805825242
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 0.8597626752966558
      name: Cosine Accuracy@100
    - type: cosine_precision@1
      value: 0.32793959007551243
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1902193455591514
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13829557713052856
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08716289104638619
      name: Cosine Precision@10
    - type: cosine_precision@30
      value: 0.038439410284070476
      name: Cosine Precision@30
    - type: cosine_precision@50
      value: 0.025717367853290186
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.014282632146709814
      name: Cosine Precision@100
    - type: cosine_recall@1
      value: 0.19877399359600004
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.32606462218112703
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.39100529100529097
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.475571479940412
      name: Cosine Recall@10
    - type: cosine_recall@30
      value: 0.6031369325867708
      name: Cosine Recall@30
    - type: cosine_recall@50
      value: 0.660217290799815
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.7195099398982894
      name: Cosine Recall@100
    - type: cosine_ndcg@10
      value: 0.3784769275629581
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.42950420369514186
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3193224907975288
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.3290183387270766
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.4886731391585761
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.5717367853290184
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.6634304207119741
      name: Dot Accuracy@10
    - type: dot_accuracy@30
      value: 0.7669902912621359
      name: Dot Accuracy@30
    - type: dot_accuracy@50
      value: 0.8133764832793959
      name: Dot Accuracy@50
    - type: dot_accuracy@100
      value: 0.8619201725997843
      name: Dot Accuracy@100
    - type: dot_precision@1
      value: 0.3290183387270766
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18985976267529667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.1387270765911543
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08737864077669903
      name: Dot Precision@10
    - type: dot_precision@30
      value: 0.038511326860841424
      name: Dot Precision@30
    - type: dot_precision@50
      value: 0.025652642934196335
      name: Dot Precision@50
    - type: dot_precision@100
      value: 0.0143042071197411
      name: Dot Precision@100
    - type: dot_recall@1
      value: 0.19940326364274585
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.32588483073919966
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.39370216263420144
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.4770997071967946
      name: Dot Recall@10
    - type: dot_recall@30
      value: 0.6043595143918767
      name: Dot Recall@30
    - type: dot_recall@50
      value: 0.659138542148251
      name: Dot Recall@50
    - type: dot_recall@100
      value: 0.7219987671443983
      name: Dot Recall@100
    - type: dot_ndcg@10
      value: 0.3791495475200093
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4305302991387128
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.31951258454174397
      name: Dot Map@100
---

# SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) <!-- at revision 104333d6af6f97649377c2afbde10a7704870c7b -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("model_3")
# Run inference
sentences = [
    "What was Nathan's response to the initial proposal from Global Air U?",
    "I don't see on the proposal.\nI don't see anything class or the class related.\nUm.\nOh, so for the course.\nNo, no.",
    'And hopefully that should update now in your account in a second.\nYeah.\nIf you give that a go now, you should see all the way to August 2025.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric               | Value      |
|:---------------------|:-----------|
| cosine_accuracy@1    | 0.3279     |
| cosine_accuracy@3    | 0.4898     |
| cosine_accuracy@5    | 0.5663     |
| cosine_accuracy@10   | 0.6613     |
| cosine_accuracy@30   | 0.767      |
| cosine_accuracy@50   | 0.8155     |
| cosine_accuracy@100  | 0.8598     |
| cosine_precision@1   | 0.3279     |
| cosine_precision@3   | 0.1902     |
| cosine_precision@5   | 0.1383     |
| cosine_precision@10  | 0.0872     |
| cosine_precision@30  | 0.0384     |
| cosine_precision@50  | 0.0257     |
| cosine_precision@100 | 0.0143     |
| cosine_recall@1      | 0.1988     |
| cosine_recall@3      | 0.3261     |
| cosine_recall@5      | 0.391      |
| cosine_recall@10     | 0.4756     |
| cosine_recall@30     | 0.6031     |
| cosine_recall@50     | 0.6602     |
| cosine_recall@100    | 0.7195     |
| cosine_ndcg@10       | 0.3785     |
| cosine_mrr@10        | 0.4295     |
| **cosine_map@100**   | **0.3193** |
| dot_accuracy@1       | 0.329      |
| dot_accuracy@3       | 0.4887     |
| dot_accuracy@5       | 0.5717     |
| dot_accuracy@10      | 0.6634     |
| dot_accuracy@30      | 0.767      |
| dot_accuracy@50      | 0.8134     |
| dot_accuracy@100     | 0.8619     |
| dot_precision@1      | 0.329      |
| dot_precision@3      | 0.1899     |
| dot_precision@5      | 0.1387     |
| dot_precision@10     | 0.0874     |
| dot_precision@30     | 0.0385     |
| dot_precision@50     | 0.0257     |
| dot_precision@100    | 0.0143     |
| dot_recall@1         | 0.1994     |
| dot_recall@3         | 0.3259     |
| dot_recall@5         | 0.3937     |
| dot_recall@10        | 0.4771     |
| dot_recall@30        | 0.6044     |
| dot_recall@50        | 0.6591     |
| dot_recall@100       | 0.722      |
| dot_ndcg@10          | 0.3791     |
| dot_mrr@10           | 0.4305     |
| dot_map@100          | 0.3195     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 7,005 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 14.59 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 60.98 tokens</li><li>max: 170 tokens</li></ul> |
* Samples:
  | anchor                                                                           | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What progress has been made with setting up Snowflake share?</code>        | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
  | <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
  | <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>Uh, and so now we just have to meet with Peter.<br>Peter is someone who I used to work with on, he used to work on, uh, syndicated data products.<br>So I used to work with him on that.</code>                                                                                                                                                                                                                                                                    |
* Loss: <code>__main__.MultipleNegativesRankingLoss_with_logging</code>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `num_train_epochs`: 2
- `max_steps`: 1751
- `disable_tqdm`: True
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 2
- `max_steps`: 1751
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 0.0114 | 20   | 0.2538         |
| 0.0228 | 40   | 0.2601         |
| 0.0342 | 60   | 0.2724         |
| 0.0457 | 80   | 0.2911         |
| 0.0571 | 100  | 0.2976         |
| 0.0685 | 120  | 0.3075         |
| 0.0799 | 140  | 0.3071         |
| 0.0913 | 160  | 0.3111         |
| 0.1027 | 180  | 0.3193         |


### Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->