File size: 1,690 Bytes
00bec6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
### κ°μ
- νκ΅μ΄ μμ½ Taskλ₯Ό μννλ λͺ¨λΈμ
λλ€.
### Base Model
- [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b)
### Dataset
AI hubμ μλ μλ μμ½ λ°μ΄ν° μ€ 3λ§κ±΄μ μνλ§νμ¬ μ¬μ©νμμ΅λλ€.
- [μΆμ μμ½ μ¬μ€μ± κ²μ¦ λ°μ΄ν°](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=71620)
- [μμ½λ¬Έ λ° λ ν¬νΈ μμ± λ°μ΄ν°](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=582)
- [λ¬Έμμμ½ ν
μ€νΈ](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=97)
- [λμμλ£ μμ½](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=9)
### λΌμ΄λΈλ¬λ¦¬ μ€μΉ
```bash
pip3 install transformers gradio vllm
```
### μμ μ½λ
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
import gradio as gr
import os
model_path = "gangyeolkim/open-llama-2-ko-7b-summarization"
sampling_params = SamplingParams(max_tokens=1024, temperature=0.1)
tokenizer = AutoTokenizer.from_pretrained(model_path)
llm = LLM(model=model_path, tokenizer=model_path, tensor_parallel_size=1)
def gen(text, history):
text = [
"### μλ¬Έ:",
f"{text}\n",
"### μμ½:\n",
]
prompts = "\n".join(text)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
generated_text = output.outputs[0].text
return generated_text
demo = gr.ChatInterface(gen)
demo.launch(share=True)
``` |