Upload comparevec2vecwithada.py
Browse files- comparevec2vecwithada.py +82 -0
comparevec2vecwithada.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""compareVec2VecWithAda.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1jPaNXdO0_oW6VczlWfm5RPUVpMtVQD9c
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import openai
|
13 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
+
from tensorflow.keras.models import load_model
|
15 |
+
from transformers import AutoTokenizer, AutoModel
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
# Load model (available from Hugging Face)
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained('all-mpnet-base-v2')
|
21 |
+
model = AutoModel.from_pretrained('all-mpnet-base-v2')
|
22 |
+
|
23 |
+
# Define cosine similarity loss
|
24 |
+
def cosine_similarity_loss(y_true, y_pred):
|
25 |
+
y_true = tf.nn.l2_normalize(y_true, axis=-1)
|
26 |
+
y_pred = tf.nn.l2_normalize(y_pred, axis=-1)
|
27 |
+
return -tf.reduce_mean(y_true * y_pred, axis=-1)
|
28 |
+
|
29 |
+
|
30 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
31 |
+
def mean_pooling(model_output, attention_mask):
|
32 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
33 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
34 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
35 |
+
|
36 |
+
loaded_model = load_model('mpnet2adaE75V4.h5', custom_objects={'cosine_similarity_loss': cosine_similarity_loss})
|
37 |
+
|
38 |
+
openai.api_key="insert API key here"
|
39 |
+
|
40 |
+
# load in csv of 10,000 embeddings in our test set paired with the original reviews
|
41 |
+
df2 = pd.read_csv('Actual_Embeddings.csv')
|
42 |
+
|
43 |
+
# Convert strings of lists to numpy arrays. this takes a while
|
44 |
+
df2['Actual_Embeddings'] = df2['Actual_Embeddings'].apply(eval).apply(np.array)
|
45 |
+
|
46 |
+
|
47 |
+
def get_top_5_texts(query):
|
48 |
+
encoded_input = tokenizer(query, padding=True, truncation=True, return_tensors='pt')
|
49 |
+
|
50 |
+
with torch.no_grad():
|
51 |
+
model_output = model(**encoded_input)
|
52 |
+
|
53 |
+
mpnetEmbeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
54 |
+
|
55 |
+
mpnetEmbeddings = F.normalize(mpnetEmbeddings, p=2, dim=1)
|
56 |
+
mpnetEmbeddings = mpnetEmbeddings.detach().cpu().numpy()
|
57 |
+
mpnetEmbeddings = np.reshape(mpnetEmbeddings, (1,-1))
|
58 |
+
query_embedding = loaded_model.predict(mpnetEmbeddings)
|
59 |
+
|
60 |
+
similarities = [cosine_similarity(query_embedding.reshape(1, -1), emb.reshape(1, -1))[0][0] for emb in df2['Actual_Embeddings']]
|
61 |
+
|
62 |
+
print("Converted MPNet Embedding Results:")
|
63 |
+
top_5_idx2 = np.argsort(similarities)[-5:][::-1]
|
64 |
+
for i, idx in enumerate(top_5_idx2, 1):
|
65 |
+
print(f'Text {i}')
|
66 |
+
print(df2['combined'].iloc[idx])
|
67 |
+
print("\n")
|
68 |
+
|
69 |
+
response = openai.Embedding.create(input=query, model="text-embedding-ada-002")
|
70 |
+
query_embedding = np.array(response['data'][0]['embedding'])
|
71 |
+
similarities2 = [cosine_similarity(query_embedding.reshape(1, -1), emb.reshape(1, -1))[0][0] for emb in df2['Actual_Embeddings']]
|
72 |
+
|
73 |
+
print("OpenAI Embedding Results:")
|
74 |
+
top_5_idx2 = np.argsort(similarities2)[-5:][::-1]
|
75 |
+
for i, idx in enumerate(top_5_idx2, 1):
|
76 |
+
print(f'Text {i}')
|
77 |
+
print(df2['combined'].iloc[idx])
|
78 |
+
print("\n")
|
79 |
+
|
80 |
+
while True:
|
81 |
+
query = input("Enter your query: ")
|
82 |
+
get_top_5_texts(query)
|