File size: 4,674 Bytes
33b35c9
 
ee336eb
 
33b35c9
 
 
 
 
 
 
 
 
 
 
 
 
ee336eb
33b35c9
ee336eb
 
33b35c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
datasets:
- ai_light_dance
model-index:
- name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_1

This model is a fine-tuned version of [gary109/ai-light-dance_drums_pretrain_wav2vec2-base-new-13k](https://huggingface.co/gary109/ai-light-dance_drums_pretrain_wav2vec2-base-new-13k) on the GARY109/AI_LIGHT_DANCE - ONSET-DRUMS_FOLD_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4630
- Wer: 0.2145

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0614        | 0.99  | 69   | 5.1275          | 1.0    |
| 1.8291        | 1.99  | 138  | 2.2008          | 1.0    |
| 1.4664        | 2.99  | 207  | 1.6821          | 1.0    |
| 1.287         | 3.99  | 276  | 1.5681          | 1.0    |
| 1.2642        | 4.99  | 345  | 1.5074          | 1.0    |
| 1.2702        | 5.99  | 414  | 1.4650          | 1.0    |
| 1.2245        | 6.99  | 483  | 1.3027          | 1.0    |
| 1.3461        | 7.99  | 552  | 1.3109          | 1.0    |
| 1.2903        | 8.99  | 621  | 1.3107          | 1.0    |
| 1.2741        | 9.99  | 690  | 1.1842          | 1.0    |
| 1.1446        | 10.99 | 759  | 1.1754          | 1.0    |
| 1.0746        | 11.99 | 828  | 1.1469          | 0.9999 |
| 0.8203        | 12.99 | 897  | 0.9071          | 0.6202 |
| 0.5996        | 13.99 | 966  | 0.7047          | 0.4234 |
| 0.5672        | 14.99 | 1035 | 0.5369          | 0.2567 |
| 0.4965        | 15.99 | 1104 | 0.4644          | 0.2861 |
| 0.5639        | 16.99 | 1173 | 0.4630          | 0.2145 |
| 0.6272        | 17.99 | 1242 | 0.6848          | 0.2667 |
| 0.6764        | 18.99 | 1311 | 0.6074          | 0.2508 |
| 0.7205        | 19.99 | 1380 | 0.6452          | 0.2184 |
| 0.346         | 20.99 | 1449 | 0.5962          | 0.2457 |
| 0.2212        | 21.99 | 1518 | 0.5236          | 0.2068 |
| 0.1646        | 22.99 | 1587 | 0.6130          | 0.2198 |
| 0.3148        | 23.99 | 1656 | 0.5592          | 0.2620 |
| 0.3061        | 24.99 | 1725 | 0.5577          | 0.2560 |
| 0.3137        | 25.99 | 1794 | 0.5247          | 0.2227 |
| 0.389         | 26.99 | 1863 | 0.5799          | 0.2081 |
| 0.4168        | 27.99 | 1932 | 0.5850          | 0.1818 |
| 0.4403        | 28.99 | 2001 | 0.5687          | 0.2053 |
| 0.4936        | 29.99 | 2070 | 0.5511          | 0.2065 |
| 0.2196        | 30.99 | 2139 | 0.5438          | 0.1706 |
| 0.1683        | 31.99 | 2208 | 0.6066          | 0.1855 |
| 0.1552        | 32.99 | 2277 | 0.5248          | 0.1930 |
| 0.1682        | 33.99 | 2346 | 0.5440          | 0.1783 |
| 0.2162        | 34.99 | 2415 | 0.6079          | 0.1778 |
| 0.3041        | 35.99 | 2484 | 0.5608          | 0.1834 |
| 0.3188        | 36.99 | 2553 | 0.6039          | 0.2007 |
| 0.3692        | 37.99 | 2622 | 0.5437          | 0.1769 |
| 0.4446        | 38.99 | 2691 | 0.6475          | 0.1881 |
| 0.386         | 39.99 | 2760 | 0.6468          | 0.1894 |
| 0.1995        | 40.99 | 2829 | 0.6398          | 0.1906 |
| 0.1174        | 41.99 | 2898 | 0.5987          | 0.1936 |
| 0.1288        | 42.99 | 2967 | 0.6133          | 0.1871 |
| 0.1857        | 43.99 | 3036 | 0.6976          | 0.1995 |
| 0.2025        | 44.99 | 3105 | 0.6356          | 0.1902 |
| 0.2922        | 45.99 | 3174 | 0.6324          | 0.2055 |
| 0.3575        | 46.99 | 3243 | 0.6338          | 0.1862 |
| 0.4019        | 47.99 | 3312 | 0.6113          | 0.1898 |
| 0.4211        | 48.99 | 3381 | 0.6320          | 0.1948 |
| 0.4323        | 49.99 | 3450 | 0.6307          | 0.1917 |


### Framework versions

- Transformers 4.24.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1