--- license: cc-by-4.0 library_name: timm --- # Model card for vit_base_patch16_1024_128.audiomae_as2m A Vision Transformer (ViT) for audio. Pretrained on AudioSet-2M with Self-Supervised Masked Autoencoder (MAE) method. - This is a port of AudioMAE ViT-B/16 weights for usage with `timm`. The naming convention is adopted from other `timm`'s ViT models. - See the original repo here: https://github.com/facebookresearch/AudioMAE - For the AudioSet-20k fine-tuned checkpoint, see https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k NOTE: this model does not have a classification head. ## Model Details - **Model Type:** Audio feature backbone - **Papers:** - Masked Autoencoders that Listen: https://arxiv.org/abs/2207.06405 - **Pretrain Dataset:** AudioSet-2M - **Original:** https://github.com/facebookresearch/AudioMAE ## Model Usage ### Audio Embeddings ```python import timm import torch import torch.nn.functional as F from torchaudio.compliance import kaldi # for fine-tuning, you can pass `num_classes={your number of classes}` model = timm.create_model("hf_hub:gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft", pretrained=True) model = model.eval() MEAN = -4.2677393 STD = 4.5689974 audio = torch.randn(1, 10 * 16_000) # make sure input is 16kHz melspec = kaldi.fbank(audio, htk_compat=True, window_type="hanning", num_mel_bins=128) # shape (n_frames, 128) # AudioMAE only accepts 1024-frame input if melspec.shape[0] < 1024: melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0])) else: melspec = melspec[:1024] melspec = (melspec - MEAN) / (STD * 2) melspec = melspec.view(1, 1, 1024, 128) # add batch dim and channel dim output = model(melspec) # embeddings with shape (1, 768) ``` ## Citation ```bibtex @inproceedings{huang2022amae, title = {Masked Autoencoders that Listen}, author = {Huang, Po-Yao and Xu, Hu and Li, Juncheng and Baevski, Alexei and Auli, Michael and Galuba, Wojciech and Metze, Florian and Feichtenhofer, Christoph} booktitle = {NeurIPS}, year = {2022} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```