gautamraj8044 commited on
Commit
8cf3d83
·
verified ·
1 Parent(s): b45c1a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -161
README.md CHANGED
@@ -3,200 +3,115 @@ base_model: distilgpt2
3
  library_name: peft
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
 
 
 
 
18
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
 
 
 
 
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
 
 
130
 
131
- #### Summary
132
 
 
133
 
 
 
 
 
 
 
 
 
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
  - PEFT 0.13.2
 
3
  library_name: peft
4
  ---
5
 
6
+ # Model Card for `gautam-raj/fine-tuned-distilgpt2`
7
 
8
+ ## Model Description
9
 
10
+ This model is a fine-tuned version of the `distilgpt2` model, trained using the Alpaca dataset. It has been optimized for generating text based on instructions and responses, designed to assist in tasks where conversational text generation is required.
11
 
12
+ ## Model Architecture
13
 
14
+ The model is based on `distilgpt2`, a smaller, distilled version of GPT-2 (Generative Pretrained Transformer 2). DistilGPT2 maintains a balance between efficiency and performance, making it suitable for applications with resource constraints. The model has been fine-tuned using a custom dataset to improve its conversational abilities.
15
 
16
+ - **Base model**: `distilgpt2`
17
+ - **Fine-tuned on**: Alpaca dataset
18
+ - **Architecture type**: Causal language model (Autoregressive)
19
+ - **Number of layers**: 6 layers
20
+ - **Hidden size**: 768
21
+ - **Attention heads**: 12
22
+ - **Vocabulary size**: 50257
23
 
24
+ ## Intended Use
25
 
26
+ This model can be used for various text generation tasks, such as:
27
+ - Conversational AI
28
+ - Dialogue systems
29
+ - Text-based question answering
30
+ - Instruction-based text generation
31
 
32
+ **Examples of use cases**:
33
+ - Chatbots
34
+ - AI assistants
35
+ - Story or content generation based on a given prompt
36
+ - Educational tools for conversational learning
37
 
38
+ ## Limitations
 
 
 
 
 
 
39
 
40
+ - **Bias**: Like many language models, this model may inherit biases present in the dataset it was trained on.
41
+ - **Context length**: The model can process a maximum of 512 tokens in one forward pass. Longer inputs will need to be truncated.
42
+ - **Specificity**: The model might not always generate highly accurate or context-specific answers, particularly in specialized domains outside its training data.
43
 
44
+ ## Training Data
45
 
46
+ The model was fine-tuned on the Alpaca dataset, which is a collection of instruction-response pairs. This data is intended to enhance the model’s ability to follow instructions and respond in a conversational manner.
 
 
47
 
48
+ ### Alpaca Dataset
49
 
50
+ The Alpaca dataset consists of instruction-based examples and outputs, ideal for training conversational agents. It includes a diverse set of instructions across multiple domains and tasks.
51
 
52
+ ## How to Use
53
 
54
+ You can load this model and generate text using the following code:
55
 
56
+ ```python
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
58
 
59
+ # Load the fine-tuned model and tokenizer
60
+ model_path = 'gautam-raj/fine-tuned-distilgpt2' # Path to the model on Hugging Face
61
 
62
+ model = AutoModelForCausalLM.from_pretrained(model_path)
63
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
64
 
65
+ # Input text
66
+ input_text = "Give three tips for staying healthy."
67
 
68
+ # Tokenize the input text
69
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
70
 
71
+ # Generate the response from the model
72
+ outputs = model.generate(
73
+ **inputs, # Pass tokenized inputs to the model
74
+ max_length=100, # Maximum length of the generated output
75
+ num_return_sequences=1, # Number of sequences to generate
76
+ no_repeat_ngram_size=2, # To avoid repetitive phrases
77
+ temperature=0.5, # Control randomness in generation
78
+ top_p=0.9, # Nucleus sampling
79
+ top_k=50, # Top-k sampling
80
+ do_sample=True
81
+ )
82
 
83
+ # Decode the generated output
84
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
85
 
86
+ print(generated_text)
87
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
  ## Evaluation
90
 
91
+ This model has not yet been evaluated in a formal benchmark, but it performs reasonably well on conversational and instructional tasks based on its fine-tuning with the Alpaca dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
+ ## License
94
 
95
+ Specify the license for the model. If you are using a license like the MIT License, you can indicate that here. Example:
96
 
97
+ ```
98
+ The model is licensed under the MIT License.
99
+ ```
100
 
101
+ ## Citation
102
 
103
+ If you are publishing the model and want to cite it, you can add a citation format here. For example:
104
 
105
+ ```
106
+ @article{gautam2024fine,
107
+ title={Fine-tuned DistilGPT2 for Instruction-based Text Generation},
108
+ author={Gautam Raj},
109
+ year={2024},
110
+ journal={Hugging Face},
111
+ url={https://huggingface.co/gautam-raj/fine-tuned-distilgpt2}
112
+ }
113
+ ```
114
 
115
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  - PEFT 0.13.2