File size: 2,473 Bytes
92b87fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-mlm-pubmed-45
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-mlm-pubmed-45
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1797
- Rouge2 Precision: 0.4333
- Rouge2 Recall: 0.3331
- Rouge2 Fmeasure: 0.3684
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 1.7989 | 1.0 | 663 | 1.3385 | 0.4097 | 0.3086 | 0.3444 |
| 1.5072 | 2.0 | 1326 | 1.2582 | 0.4218 | 0.3213 | 0.3569 |
| 1.4023 | 3.0 | 1989 | 1.2236 | 0.4207 | 0.3211 | 0.3562 |
| 1.2205 | 4.0 | 2652 | 1.2025 | 0.4359 | 0.3331 | 0.3696 |
| 1.1584 | 5.0 | 3315 | 1.1910 | 0.4304 | 0.3307 | 0.3658 |
| 1.1239 | 6.0 | 3978 | 1.1830 | 0.4247 | 0.3279 | 0.3618 |
| 1.0384 | 7.0 | 4641 | 1.1761 | 0.4308 | 0.3325 | 0.367 |
| 1.0168 | 8.0 | 5304 | 1.1762 | 0.4314 | 0.3336 | 0.368 |
| 0.9966 | 9.0 | 5967 | 1.1773 | 0.4335 | 0.3341 | 0.369 |
| 0.961 | 10.0 | 6630 | 1.1797 | 0.4333 | 0.3331 | 0.3684 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|