File size: 1,788 Bytes
80b6093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
tags:
- generated_from_trainer
datasets:
- xnli
metrics:
- accuracy
model-index:
- name: bert-xnli-de-classifier
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: xnli
      type: xnli
      config: de
      split: validation
      args: de
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7807228915662651
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-xnli-de-classifier

This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the xnli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5897
- Accuracy: 0.7807

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.554         | 1.0   | 6136  | 0.5783          | 0.7675   |
| 0.4946        | 2.0   | 12272 | 0.5471          | 0.7892   |
| 0.3416        | 3.0   | 18408 | 0.5897          | 0.7807   |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2