File size: 1,788 Bytes
80b6093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xnli
metrics:
- accuracy
model-index:
- name: bert-xnli-de-classifier
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: xnli
type: xnli
config: de
split: validation
args: de
metrics:
- name: Accuracy
type: accuracy
value: 0.7807228915662651
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-xnli-de-classifier
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the xnli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5897
- Accuracy: 0.7807
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.554 | 1.0 | 6136 | 0.5783 | 0.7675 |
| 0.4946 | 2.0 | 12272 | 0.5471 | 0.7892 |
| 0.3416 | 3.0 | 18408 | 0.5897 | 0.7807 |
### Framework versions
- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|