gayanin commited on
Commit
95e2d82
·
1 Parent(s): 24361bc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: t5-small-paraphrasing-mlm-med-mask-filling-cm0
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # t5-small-paraphrasing-mlm-med-mask-filling-cm0
14
+
15
+ This model is a fine-tuned version of [gayanin/t5-small-paraphrase-pubmed](https://huggingface.co/gayanin/t5-small-paraphrase-pubmed) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.6697
18
+ - Rouge2 Precision: 0.6929
19
+ - Rouge2 Recall: 0.4742
20
+ - Rouge2 Fmeasure: 0.5443
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 0.9213 | 1.0 | 13915 | 0.8075 | 0.6708 | 0.4603 | 0.5281 |
53
+ | 0.8573 | 2.0 | 27830 | 0.7534 | 0.6802 | 0.4671 | 0.5356 |
54
+ | 0.8127 | 3.0 | 41745 | 0.7254 | 0.684 | 0.468 | 0.5373 |
55
+ | 0.7809 | 4.0 | 55660 | 0.7071 | 0.6867 | 0.4702 | 0.5397 |
56
+ | 0.7651 | 5.0 | 69575 | 0.6939 | 0.6886 | 0.4711 | 0.5409 |
57
+ | 0.7598 | 6.0 | 83490 | 0.6849 | 0.6904 | 0.4721 | 0.5422 |
58
+ | 0.7429 | 7.0 | 97405 | 0.6778 | 0.6917 | 0.4725 | 0.5427 |
59
+ | 0.7438 | 8.0 | 111320 | 0.6731 | 0.6917 | 0.4723 | 0.5426 |
60
+ | 0.743 | 9.0 | 125235 | 0.6707 | 0.6935 | 0.4748 | 0.545 |
61
+ | 0.7349 | 10.0 | 139150 | 0.6697 | 0.6929 | 0.4742 | 0.5443 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.21.1
67
+ - Pytorch 1.12.1+cu113
68
+ - Datasets 2.4.0
69
+ - Tokenizers 0.12.1