File size: 11,109 Bytes
6a34073 bfda42b 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 b170da8 6a34073 6297d4a 6a34073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
---
license: cc-by-nc-sa-4.0
tags:
- chemistry
- drug-design
- synthesis-accessibility
- cheminformatics
- drug-discovery
- selfies
- drugs
- molecules
- compounds
- ranger21
- madgrad
pipeline_tag: text-classification
---
# Model Card for ChemFIE-SA (Synthesis Accessibility)
This model is a BERT-like sequence classifier for predicting synthesis accessibility given a SELFIES string of a compound, fine-tuned from [gbyuvd/chemselfies-base-bertmlm](https://huggingface.co/gbyuvd/chemselfies-base-bertmlm) on a DeepSA expanded train dataset (Wang et al. 2023).
### Disclaimer: For Academic Purposes Only
The information and model provided is for academic purposes only. It is intended for educational and research use, and should not be used for any commercial or legal purposes. The author do not guarantee the accuracy, completeness, or reliability of the information.
[![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/O4O710GFBZ)
## Model Details
### Model Description
- **Model Type:** Transformer (BertForSequenceClassification)
- **Base model:** [gbyuvd/chemselfies-base-bertmlm](https://huggingface.co/gbyuvd/chemselfies-base-bertmlm)
- **Maximum Sequence Length:** 512 tokens
- **Number of Labels:** 2 classes (0 ES: easy synthesis; 1 HS: hard to synthesize)
- **Training Dataset:** SELFIES with labels derived from DeepSA
- **Language:** SELFIES
- **License:** CC-BY-NC-SA 4.0
## Uses
If you have Canonical SMILES instead of SELFIES, you can convert it first into a format readable by the model's tokenizer (using whitespace)
```python
import selfies as sf
def smiles_to_selfies_sentence(smiles):
try:
selfies = sf.encoder(smiles) # Encode SMILES into SELFIES
selfies_tokens = list(sf.split_selfies(selfies))
# Join dots with the nearest next tokens
joined_tokens = []
i = 0
while i < len(selfies_tokens):
if selfies_tokens[i] == '.' and i + 1 < len(selfies_tokens):
joined_tokens.append(f".{selfies_tokens[i+1]}")
i += 2
else:
joined_tokens.append(selfies_tokens[i])
i += 1
selfies_sentence = ' '.join(joined_tokens)
return selfies_sentence
except sf.EncoderError as e:
print(f"Encoder Error: {e}")
return None
# Example usage:
in_smi = "C1CCC(CC1)(CC(=O)O)CN" # Gabapentin (CID3446)
selfies_sentence = smiles_to_selfies_sentence(in_smi)
print(selfies_sentence)
"""
[C] [C] [C] [C] [Branch1] [Branch1] [C] [C] [Ring1] [=Branch1] [Branch1] [#Branch1] [C] [C] [=Branch1] [C] [=O] [O] [C] [N]
"""
```
### Direct Use using Classifier Pipeline
You can also use pipeline:
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="gbyuvd/synthaccess-chemselfies")
classifier("[C] [C] [C] [C] [Branch1] [Branch1] [C] [C] [Ring1] [=Branch1] [Branch1] [#Branch1] [C] [C] [=Branch1] [C] [=O] [O] [C] [N]") # Gabapentin
# [{'label': 'Easy', 'score': 0.9187200665473938}]
```
## Training Details
### Training Data
##### Data Sources
Training data is fetched from [DeepSA's repository](https://github.com/Shihang-Wang-58/DeepSA).
##### Data Preparation
- SMILES is converted into SELFIES
- Chunked into three parts to accommodate Paperspace's Gradient 6hrs limit.
- Then the data was split by 90:10 ratio of train:validation.
- 1st chunk size: 1,197,683 (1,077,915 train : 119,768 validation)
- The data contain labels for:
- 0: Easy synthesis (requires less than 10 steps)
- 1: Hard synthesis (requires more than 10 steps)
### Training Procedure
#### Training Hyperparameters
- Epoch = 1 for each chunk
- Batch size = 128
- Number of steps for each chunk: 8422
I am using Ranger21 with these configuration:
```
Ranger21 optimizer ready with following settings:
Core optimizer = [madgrad](https://arxiv.org/abs/2101.11075)
Learning rate of 5e-06
Important - num_epochs of training = ** 1 epochs **
using AdaBelief for variance computation
Warm-up: linear warmup, over 2000 iterations
Lookahead active, merging every 5 steps, with blend factor of 0.5
Norm Loss active, factor = 0.0001
Stable weight decay of 0.01
Gradient Centralization = On
Adaptive Gradient Clipping = True
clipping value of 0.01
steps for clipping = 0.001
```
1st Chunk:
| Step | Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
| :--: | :-----------: | :-------------: | :------: | :-------: | :------: | :------: | :------: |
| 8420 | 0.128700 | 0.128632 | 0.922860 | 0.975201 | 0.867836 | 0.918391 | 0.990007 |
## Model Evaluation
### Testing Data
The model (currently only trained on the 1st chunk) was evaluated using three distinct test sets provided by DeepSA's authors (Wang et al. 2023) to ensure comprehensive performance assessment across various scenarios:
1. **Main Expanded Test Set**
2. **Independent Test Set 1 (TS1)**
- Characteristics: Contains ES and HS compounds with high intra-group fingerprint similarity, but significant inter-group pattern differences.
3. **Independent Test Set 2 (TS2)**
- Characteristics: Contains a small portion of ES and HS molecules showing similar fingerprint patterns.
4. **Independent Test Set 3 (TS3)**
- Characteristics: All compounds exhibit high fingerprint similarity, presenting the most challenging classification task.
### Evaluation Metrics
We employed a comprehensive set of metrics to evaluate our model's performance:
1. **Accuracy (ACC)**: Overall correctness of predictions
2. **Recall**: Ability to identify all relevant instances (sensitivity)
3. **Precision**: Accuracy of positive predictions
4. **F1-score**: Harmonic mean of precision and recall
5. **Area Under the Receiver Operating Characteristic curve (AUROC)**: Model's ability to distinguish between classes
All metrics were evaluated using a threshold of 0.50 for binary classification.
### Results
Below are the detailed results of our model's performance across all test sets:
#### Expanded Test Set Results
Comparison data is sourced from Wang et al. (2023), used various models as encoding layer:
- bert-mini (MinBert)
- bert-tini (TinBert)
- roberta-base (RoBERTa)
- deberta-v3-base (DeBERTa)
- Chem_GraphCodeBert (GraphCodeBert)
- electra-small-discriminator (SmELECTRA)
- ChemBERTa-77M-MTR (ChemMTR)
- ChemBERTa-77M-MLM (ChemMLM)
which was trained/fine-tuned to predict based on SMILES - while ChemFIE-SA is SELFIES-based:
| **Model** | **Recall** | **Precision** | **F–score** | **AUROC** |
| -------------------- | :--------: | :-----------: | :---------: | :-------: |
| DeepSA_DeBERTa | 0.873 | 0.920 | 0.896 | 0.959 |
| DeepSA_GraphCodeBert | 0.931 | 0.944 | 0.937 | 0.987 |
| DeepSA_MinBert | 0.933 | 0.945 | 0.939 | 0.988 |
| DeepSA_RoBERTa | 0.940 | 0.940 | 0.940 | 0.988 |
| DeepSA_TinBert | 0.937 | 0.947 | 0.942 | 0.990 |
| DeepSA_SmELECTRA | 0.938 | 0.949 | 0.943 | 0.990 |
| **ChemFIE-SA** | 0.952 | 0.942 | 0.947 | 0.990 |
| DeepSA_ChemMLM | 0.955 | 0.967 | 0.961 | 0.995 |
| DeepSA_ChemMTR | 0.968 | 0.974 | 0.971 | 0.997 |
#### TS1-3 Results
Comparison with DeepSA_SmELECTRA as described in Wang et al. (2023):
| Datasets | Model | ACC | Recall | Precision | F-score | AUROC | Threshold |
| -------- | ---------- | :---: | :----: | :-------: | :-----: | :---: | :-------: |
| TS1 | DeepSA | 0.995 | 1.000 | 0.990 | 0.995 | 1.000 | 0.500 |
| | ChemFIE-SA | 0.996 | 1.000 | 0.992 | 0.996 | 1.000 | 0.500 |
| TS2 | DeepSA | 0.838 | 0.730 | 0.871 | 0.795 | 0.913 | 0.500 |
| | ChemFIE-SA | 0.805 | 0.775 | 0.770 | 0.773 | 0.886 | 0.500 |
| TS3 | DeepSA | 0.817 | 0.753 | 0.864 | 0.805 | 0.896 | 0.500 |
| | ChemFIE-SA | 0.731 | 0.642 | 0.781 | 0.705 | 0.797 | 0.500 |
## Model Examination
You can visualize its attention heads using [BertViz](https://github.com/jessevig/bertviz) and attribution weights using [Captum](https://captum.ai/) - as [done in the base model](gbyuvd/chemselfies-base-bertmlm) in Interpretability section.
### Compute Infrastructure
#### Hardware
- Platform: Paperspace's Gradients
- Compute: Free-P5000 (16 GB GPU, 30 GB RAM, 8 vCPU)
#### Software
- Python: 3.9.13
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
- Ranger21: 0.0.1
- Selfies: 2.1.2
- RDKit: 2024.3.3
## Citation
If you find this project useful in your research and wish to cite it, please use the following BibTex entry:
```bibtex
@software{chemfie_basebertmlm,
author = {GP Bayu},
title = {{ChemFIE Base}: Pretraining A Lightweight BERT-like model on Molecular SELFIES},
url = {https://huggingface.co/gbyuvd/chemselfies-base-bertmlm},
version = {1.0},
year = {2024},
}
```
## References
[DeepSA](https://doi.org/10.1186/s13321-023-00771-3)
```bibtex
@article{Wang2023DeepSA,
title={DeepSA: a deep-learning driven predictor of compound synthesis accessibility},
author={Wang, Shihang and Wang, Lin and Li, Fenglei and Bai, Fang},
journal={Journal of Cheminformatics},
volume={15},
pages={103},
year={2023},
month={Nov},
publisher={BioMed Central},
doi={10.1186/s13321-023-00771-3},
}
```
[SELFIES](https://doi.org/10.1088/2632-2153/aba947)
```bibtex
@article{krenn2020selfies,
title={Self-referencing embedded strings (SELFIES): A 100\% robust molecular string representation},
author={Krenn, Mario and H{\"a}se, Florian and Nigam, AkshatKumar and Friederich, Pascal and Aspuru-Guzik, Alan},
journal={Machine Learning: Science and Technology},
volume={1},
number={4},
pages={045024},
year={2020},
doi={10.1088/2632-2153/aba947}
}
```
[Ranger21](https://arxiv.org/abs/2106.13731)
```bibtex
@article{wright2021ranger21,
title={Ranger21: a synergistic deep learning optimizer},
author={Wright, Less and Demeure, Nestor},
year={2021},
journal={arXiv preprint arXiv:2106.13731},
}
```
## Contact & Support My Work
G Bayu ([email protected])
This project has been quiet a journey for me, I’ve dedicated hours on this and I would like to improve myself, this model, and future projects. However, financial and computational constraints can be challenging.
If you find my work valuable and would like to support my journey, please consider supporting me [here](https://ko-fi.com/gbyuvd). Your support will help me cover costs for computational resources, data acquisition, and further development of this project. Any amount, big or small, is greatly appreciated and will enable me to continue learning and explore more.
Thank you for checking out this model, I am more than happy to receive any feedback, so that I can improve myself and the future model/projects I will be working on. |