Update parm_dict.json
Browse files- parm_dict.json +49 -11
parm_dict.json
CHANGED
@@ -1,37 +1,75 @@
|
|
1 |
{
|
2 |
"root_path": "C:/tmp_data/extract_feature/",
|
|
|
3 |
"feature_file_name": "multi_features_data_simu5.pkl",
|
4 |
"Is_train_autoencoder": false,
|
5 |
"autoencoder_structure": 4,
|
6 |
"L1": {
|
7 |
-
"choose_model": "Hierarchical",
|
8 |
-
"_param_threshold_dsp": "the number less than the threshold of all count according cluster",
|
9 |
"noise_threshold": 0.01,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"_param1_dsp": "param 1 is factor ,the stable indicattor (percentage of flucuation)(difference from the reverse previous 2 level)",
|
11 |
"_param2_dsp": "param 2 is min number of cluster",
|
12 |
"_param3_dsp": "param 3 is max number of cluster",
|
13 |
"_param4_dsp": "param 4 is standby threshold (percentage)",
|
14 |
-
"Hierarchical_power_params": [
|
15 |
-
[0.3 , 4, 10, 0.5],
|
16 |
-
[0.2 , 4, 10, 0.5],
|
17 |
-
[0.15, 4, 10, 0.5],
|
18 |
-
[0.1 , 4, 10, 0.5]
|
19 |
-
],
|
20 |
"Is_save_model": true,
|
21 |
-
"Hierarchical_vib_params": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"L1_models_name": "L1_models.pkl"
|
23 |
},
|
24 |
"L2": {
|
25 |
"strategy": "consensus",
|
|
|
26 |
"Is_save_model": true,
|
27 |
"consensus_model": "GMM",
|
28 |
-
"
|
|
|
|
|
29 |
"feature_fusion_pca_factor": 0.95,
|
|
|
30 |
"feature_fusion_model": "GMM",
|
31 |
"meta_clustering_model": "GMM",
|
32 |
"number_class": 0,
|
|
|
33 |
"min_class": 2,
|
|
|
34 |
"max_class": 7,
|
35 |
-
"
|
|
|
|
|
36 |
}
|
37 |
}
|
|
|
1 |
{
|
2 |
"root_path": "C:/tmp_data/extract_feature/",
|
3 |
+
"upload_path": "C:/tmp_data/extract_feature/upload_models/",
|
4 |
"feature_file_name": "multi_features_data_simu5.pkl",
|
5 |
"Is_train_autoencoder": false,
|
6 |
"autoencoder_structure": 4,
|
7 |
"L1": {
|
|
|
|
|
8 |
"noise_threshold": 0.01,
|
9 |
+
"_noise_threshold_dsp": "the number less of cluster than the threshold, consider to be noise",
|
10 |
+
"choose_model": "Hierarchical",
|
11 |
+
"_choose_model_dsp": "options, Hierarchical, DBSCAN",
|
12 |
+
"Hierarchical_power_params": [
|
13 |
+
[
|
14 |
+
0.3,
|
15 |
+
4,
|
16 |
+
10,
|
17 |
+
0.5
|
18 |
+
],
|
19 |
+
[
|
20 |
+
0.2,
|
21 |
+
4,
|
22 |
+
10,
|
23 |
+
0.5
|
24 |
+
],
|
25 |
+
[
|
26 |
+
0.15,
|
27 |
+
4,
|
28 |
+
10,
|
29 |
+
0.5
|
30 |
+
],
|
31 |
+
[
|
32 |
+
0.1,
|
33 |
+
4,
|
34 |
+
10,
|
35 |
+
0.5
|
36 |
+
]
|
37 |
+
],
|
38 |
"_param1_dsp": "param 1 is factor ,the stable indicattor (percentage of flucuation)(difference from the reverse previous 2 level)",
|
39 |
"_param2_dsp": "param 2 is min number of cluster",
|
40 |
"_param3_dsp": "param 3 is max number of cluster",
|
41 |
"_param4_dsp": "param 4 is standby threshold (percentage)",
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"Is_save_model": true,
|
43 |
+
"Hierarchical_vib_params": [
|
44 |
+
[
|
45 |
+
0.2,
|
46 |
+
4,
|
47 |
+
10,
|
48 |
+
0.5
|
49 |
+
]
|
50 |
+
],
|
51 |
+
"_Hierarchical_vib_params_dsp": "For vibration, the format is same",
|
52 |
"L1_models_name": "L1_models.pkl"
|
53 |
},
|
54 |
"L2": {
|
55 |
"strategy": "consensus",
|
56 |
+
"_strategy_dsp": "options: consensus, feature_fusion, meta_clustering, multi_view_cluster",
|
57 |
"Is_save_model": true,
|
58 |
"consensus_model": "GMM",
|
59 |
+
"_consensus_model_dsp": "model using on each type of sensor clusting: KMeans, GMM",
|
60 |
+
"result_type": "prob",
|
61 |
+
"_result_type_dsp": "The input the consensus matrix is each submodel result: prob (probability), one-hot",
|
62 |
"feature_fusion_pca_factor": 0.95,
|
63 |
+
"_feature_fusion_pca_factor_dsp": "how much the PCA catch of the variance\uff0cfor feature_fusion, meta_clustering, multi_view_cluster",
|
64 |
"feature_fusion_model": "GMM",
|
65 |
"meta_clustering_model": "GMM",
|
66 |
"number_class": 0,
|
67 |
+
"_number_class_dsp": "The spicify cluster number of each type of sensor. 0 mean search optimal number base on certain score",
|
68 |
"min_class": 2,
|
69 |
+
"_min_class_dsp": "minimum cluster number for search optimal option",
|
70 |
"max_class": 7,
|
71 |
+
"_max_class_dsp": "maximum cluster number (not include) for search optimal option",
|
72 |
+
"covariance_type": "diag",
|
73 |
+
"_covariance_type_dsp": "GMM parameter, effect on model size"
|
74 |
}
|
75 |
}
|