File size: 2,632 Bytes
e114c39
 
 
 
 
 
e96553f
e114c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1c5929
 
e114c39
 
 
 
 
 
 
 
 
 
 
 
 
 
0177b62
 
 
 
 
e96553f
0177b62
e114c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
- fnet-bert-base-comparison
datasets:
- glue
metrics:
- accuracy
model-index:
- name: fnet-base-finetuned-mnli
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE MNLI
      type: glue
      args: mnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7674938974776241
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fnet-base-finetuned-mnli

This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6443
- Accuracy: 0.7675

The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased).

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used:

```bash
#!/usr/bin/bash

python ../run_glue.py \\n  --model_name_or_path google/fnet-base \\n  --task_name mnli \\n  --do_train \\n  --do_eval \\n  --max_seq_length 512 \\n  --per_device_train_batch_size 16 \\n  --learning_rate 2e-5 \\n  --num_train_epochs 3 \\n  --output_dir fnet-base-finetuned-mnli \\n  --push_to_hub \\n  --hub_strategy all_checkpoints \\n  --logging_strategy epoch \\n  --save_strategy epoch \\n  --evaluation_strategy epoch \\n```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7143        | 1.0   | 24544 | 0.6169          | 0.7504   |
| 0.5407        | 2.0   | 49088 | 0.6218          | 0.7627   |
| 0.4178        | 3.0   | 73632 | 0.6564          | 0.7658   |


### Framework versions

- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3