gchhablani commited on
Commit
164222f
·
1 Parent(s): a3eedbd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - glue
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ model-index:
13
+ - name: fnet-base-finetuned-qqp
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: GLUE QQP
20
+ type: glue
21
+ args: qqp
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8847390551570616
26
+ - name: F1
27
+ type: f1
28
+ value: 0.8466197090382463
29
+ ---
30
+
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # fnet-base-finetuned-qqp
35
+
36
+ This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE QQP dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.3686
39
+ - Accuracy: 0.8847
40
+ - F1: 0.8466
41
+ - Combined Score: 0.8657
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 16
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 3.0
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
71
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
72
+ | 0.3484 | 1.0 | 22741 | 0.3014 | 0.8676 | 0.8297 | 0.8487 |
73
+ | 0.2387 | 2.0 | 45482 | 0.3011 | 0.8801 | 0.8429 | 0.8615 |
74
+ | 0.1739 | 3.0 | 68223 | 0.3686 | 0.8847 | 0.8466 | 0.8657 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.11.0.dev0
80
+ - Pytorch 1.9.0
81
+ - Datasets 1.12.1
82
+ - Tokenizers 0.10.3