--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: fnet-base-finetuned-qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8847390551570616 - name: F1 type: f1 value: 0.8466197090382463 --- # fnet-base-finetuned-qqp This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3686 - Accuracy: 0.8847 - F1: 0.8466 - Combined Score: 0.8657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3484 | 1.0 | 22741 | 0.3014 | 0.8676 | 0.8297 | 0.8487 | | 0.2387 | 2.0 | 45482 | 0.3011 | 0.8801 | 0.8429 | 0.8615 | | 0.1739 | 3.0 | 68223 | 0.3686 | 0.8847 | 0.8466 | 0.8657 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3