Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,98 @@
|
|
1 |
-
---
|
2 |
-
license: gpl-3.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
datasets:
|
4 |
+
- Msun/modelnet40
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
tags:
|
10 |
+
- deeplearning
|
11 |
+
---
|
12 |
+
# **Automated Defect Detection in 3D Mesh Files Using Multi-Model Deep Learning Approaches**
|
13 |
+
|
14 |
+
## **π Project Overview**
|
15 |
+
This project introduces a **multi-modal deep learning approach** to detect **defects in 3D mesh files** by combining:
|
16 |
+
- **CNN (Convolutional Neural Network)** for **object classification** using **ModelNet40** dataset images.
|
17 |
+
- **GNN (Graph Neural Network)** for **defect identification** in **OFF files (3D mesh models).**
|
18 |
+
- **Fusion Model** integrating **CNN and GNN** for improved classification accuracy.
|
19 |
+
|
20 |
+
## **π Dataset & Novelty**
|
21 |
+
The dataset used in this project is **novel and proprietary**, focusing on defect detection in 3D mesh files. Only the **ModelNet40 dataset** is publicly available.
|
22 |
+
|
23 |
+
### **πΉ Folder Structure**
|
24 |
+
```
|
25 |
+
π¦ Dataset
|
26 |
+
β£ π Images
|
27 |
+
β β£ π train
|
28 |
+
β β β£ π category_1
|
29 |
+
β β β£ π category_2
|
30 |
+
β β β ...
|
31 |
+
β β π test
|
32 |
+
β π OFF_files
|
33 |
+
β£ π train
|
34 |
+
β β£ π category_1
|
35 |
+
β β β£ π normal
|
36 |
+
β β β π defected
|
37 |
+
β β£ π category_2
|
38 |
+
β β β£ π normal
|
39 |
+
β β β π defected
|
40 |
+
β π test
|
41 |
+
|
42 |
+
```
|
43 |
+
- **Images Folder** β Contains object images categorized into different classes (used for CNN).
|
44 |
+
- **OFF Files Folder** β Each category has **"normal"** and **"defected"** OFF files (used for GNN).
|
45 |
+
|
46 |
+
---
|
47 |
+
|
48 |
+
## **π Model Architecture**
|
49 |
+
### **πΉ CNN Model (Image Classification)**
|
50 |
+
- Uses a **pretrained CNN model (ResNet)** to classify objects.
|
51 |
+
|
52 |
+
### **πΉ GNN Model (Defect Identification)**
|
53 |
+
- Processes **OFF files** using **node features** and **adjacency matrices**.
|
54 |
+
- Uses a **13-layer deep GNN model** to capture mesh structure defects.
|
55 |
+
|
56 |
+
### **πΉ Multi-Modal Fusion Model**
|
57 |
+
- Combines **CNN and GNN outputs** using **fully connected layers**.
|
58 |
+
- Improves **accuracy by leveraging both image and graph information**.
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
## **βοΈ Installation & Setup**
|
63 |
+
### **πΉ 1οΈβ£ Install Dependencies**
|
64 |
+
```bash
|
65 |
+
pip install tensorflow numpy networkx trimesh
|
66 |
+
```
|
67 |
+
|
68 |
+
### **πΉ 2οΈβ£ Run Training**
|
69 |
+
```bash
|
70 |
+
python Utils/train.py
|
71 |
+
```
|
72 |
+
|
73 |
+
### **πΉ 3οΈβ£ Evaluate Model**
|
74 |
+
```bash
|
75 |
+
python Utils/evaluate.py
|
76 |
+
```
|
77 |
+
|
78 |
+
---
|
79 |
+
|
80 |
+
## **π Results & Evaluation**
|
81 |
+
- **CNN Classification Accuracy:** **76%**
|
82 |
+
- **GNN Defect Detection Accuracy:** **78%**
|
83 |
+
- **Fusion Model Accuracy:** **85%**
|
84 |
+
|
85 |
+
---
|
86 |
+
|
87 |
+
## **π οΈ Future Improvements**
|
88 |
+
- Use **a more complex GNN model** (with at least **13 layers**).
|
89 |
+
- Improve **multi-modal fusion model** by adding **extra layers**.
|
90 |
+
- Train on **a larger dataset** to improve generalization.
|
91 |
+
|
92 |
+
---
|
93 |
+
|
94 |
+
## **π¨βπ» Author**
|
95 |
+
**Dhanush**
|
96 |
+
π§ Contact: [e-mail](mailto:[email protected])
|
97 |
+
|
98 |
+
---
|