File size: 2,681 Bytes
cdd7ccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

# import required packages
import cv2
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from sklearn.utils.class_weight import compute_class_weight
import numpy as np

# Initialize image data generator with rescaling
train_data_gen = ImageDataGenerator(rescale=1./255)
validation_data_gen = ImageDataGenerator(rescale=1./255)

# Preprocess all test images
train_generator = train_data_gen.flow_from_directory(
        'data/train',
        target_size=(48, 48),
        batch_size=64,
        color_mode="grayscale",
        class_mode='categorical')



# Calculate class weights
class_labels = train_generator.classes
class_weights = compute_class_weight(class_weight = "balanced", classes= np.unique(class_labels), y= class_labels)
class_weight_dict = dict(enumerate(class_weights))


# Preprocess all train images
validation_generator = validation_data_gen.flow_from_directory(
        'data/test',
        target_size=(48, 48),
        batch_size=64,
        color_mode="grayscale",
        class_mode='categorical')

# create model structure
emotion_model = Sequential()

emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(3, activation='softmax'))

cv2.ocl.setUseOpenCL(False)

emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001), metrics=['accuracy'])

# Train the neural network/model
emotion_model_info = emotion_model.fit_generator(
        train_generator,
        steps_per_epoch=len(train_generator) // 64,
        epochs=100,
        validation_data=validation_generator,
        validation_steps=7178 // 64,
        class_weight=class_weight_dict)


# save model structure in jason file
model_json = emotion_model.to_json()
with open("model/emotion_model.json", "w") as json_file:
    json_file.write(model_json)

# save trained model weight in .h5 file
emotion_model.save_weights('model/emotion_model.h5')