import numpy as np from keras.models import model_from_json import matplotlib.pyplot as plt from keras.preprocessing.image import ImageDataGenerator from sklearn.metrics import confusion_matrix, classification_report,ConfusionMatrixDisplay emotion_dict = {0: "Happy", 1: "Neutral", 2: "Sad"} # load json and create model json_file = open('model/emotion_model.json', 'r') loaded_model_json = json_file.read() json_file.close() emotion_model = model_from_json(loaded_model_json) # load weights into new model emotion_model.load_weights("model/emotion_model.h5") print("Loaded model from disk") # Initialize image data generator with rescaling test_data_gen = ImageDataGenerator(rescale=1./255) # Preprocess all test images test_generator = test_data_gen.flow_from_directory( 'data/test', target_size=(48, 48), batch_size=64, color_mode="grayscale", class_mode='categorical', classes=['Happy', 'Neutral', 'Sad']) # do prediction on test data predictions = emotion_model.predict(test_generator) # see predictions for result in predictions: max_index = int(np.argmax(result)) print(emotion_dict[max_index]) print("-----------------------------------------------------------------") # confusion matrix c_matrix = confusion_matrix(test_generator.classes, predictions.argmax(axis=1)) print(c_matrix) cm_display = ConfusionMatrixDisplay(confusion_matrix=c_matrix, display_labels=list(emotion_dict.values())) cm_display.plot(cmap=plt.cm.Blues) plt.show() # Classification report print("-----------------------------------------------------------------") print(classification_report(test_generator.classes, predictions.argmax(axis=1)))