File size: 5,594 Bytes
7216efd 8f2370f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
license: mit
---
# DepthPro: Human Segmentation
- This work is a part of the [DepthPro: Beyond Depth Estimation](https://github.com/geetu040/depthpro-beyond-depth) repository, which further explores this model's capabilities on:
- Image Segmentation - Human Segmentation
- Image Super Resolution - 384px to 1536px (4x Upscaling)
- Image Super Resolution - 256px to 1024px (4x Upscaling)
# Usage
Install the required libraries:
```bash
pip install -q numpy pillow torch torchvision
pip install -q git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
```
Import the required libraries:
```py
import requests
from PIL import Image
import torch
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt
# custom installation from this PR: https://github.com/huggingface/transformers/pull/34583
# !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation
```
Load DepthProForDepthEstimation model
```py
# load DepthPro model, used as backbone
config = DepthProConfig(
patch_size=32,
patch_embeddings_size=4,
num_hidden_layers=12,
intermediate_hook_ids=[11, 8, 7, 5],
intermediate_feature_dims=[256, 256, 256, 256],
scaled_images_ratios=[0.5, 1.0],
scaled_images_overlap_ratios=[0.5, 0.25],
scaled_images_feature_dims=[1024, 512],
use_fov_model=False,
)
depthpro_for_depth_estimation = DepthProForDepthEstimation(config)
```
Create DepthProForSuperResolution model
```py
# create DepthPro for super resolution
class DepthProForSuperResolution(torch.nn.Module):
def __init__(self, depthpro_for_depth_estimation):
super().__init__()
self.depthpro_for_depth_estimation = depthpro_for_depth_estimation
hidden_size = self.depthpro_for_depth_estimation.config.fusion_hidden_size
self.image_head = torch.nn.Sequential(
torch.nn.ConvTranspose2d(
in_channels=config.num_channels,
out_channels=hidden_size,
kernel_size=4, stride=2, padding=1
),
torch.nn.ReLU(),
)
self.head = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=hidden_size,
out_channels=hidden_size,
kernel_size=3, stride=1, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(
in_channels=hidden_size,
out_channels=hidden_size,
kernel_size=4, stride=2, padding=1
),
torch.nn.ReLU(),
torch.nn.Conv2d(
in_channels=hidden_size,
out_channels=self.depthpro_for_depth_estimation.config.num_channels,
kernel_size=3, stride=1, padding=1
),
)
def forward(self, pixel_values):
# x is the low resolution image
x = pixel_values
encoder_features = self.depthpro_for_depth_estimation.depth_pro(x).features
fused_hidden_state = self.depthpro_for_depth_estimation.fusion_stage(encoder_features)[-1]
x = self.image_head(x)
x = torch.nn.functional.interpolate(x, size=fused_hidden_state.shape[2:])
x = x + fused_hidden_state
x = self.head(x)
return x
```
Load the model and image processor:
```py
# initialize the model
model = DepthProForSuperResolution(depthpro_for_depth_estimation)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# load weights
weights_path = hf_hub_download(repo_id="geetu040/DepthPro_SR_4x_256p", filename="model_weights.pth")
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
# load image processor
image_processor = DepthProImageProcessorFast(
do_resize=False,
do_rescale=True,
do_normalize=True
)
```
Inference:
```py
# inference
url = "https://huggingface.co/spaces/geetu040/DepthPro_SR_4x_256p/resolve/main/assets/examples/man_with_arms_open.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
image.thumbnail((256, 256)) # resizes the image object to fit within a 256x256 pixel box
# prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# convert tensors to PIL.Image
output = outputs[0] # extract the first and only batch
output = output.cpu() # unload from cuda if used
output = torch.permute(output, (1, 2, 0)) # (C, H, W) -> (H, W, C)
output = output * 0.5 + 0.5 # undo normalization
output = output * 255. # undo scaling
output = output.clip(0, 255.) # fix out of range
output = output.numpy() # convert to numpy
output = output.astype('uint8') # convert to PIL.Image compatible format
output = Image.fromarray(output) # create PIL.Image object
# visualize the prediction
fig, axes = plt.subplots(1, 2, figsize=(20, 20))
axes[0].imshow(image)
axes[0].set_title(f'Low-Resolution (LR) {image.size}')
axes[0].axis('off')
axes[1].imshow(output)
axes[1].set_title(f'Super-Resolution (SR) {output.size}')
axes[1].axis('off')
plt.subplots_adjust(wspace=0, hspace=0)
plt.show()
```
|