geetu040 commited on
Commit
103021b
·
1 Parent(s): 734d3ef

update README

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -1,3 +1,106 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # DepthPro: Human Segmentation
6
+
7
+ - This work is a part of the [DepthPro: Beyond Depth Estimation](https://github.com/geetu040/depthpro-beyond-depth) repository, which further explores this model's capabilities on:
8
+ - Image Segmentation - Human Segmentation
9
+ - Image Super Resolution - 384px to 1536px (4x Upscaling)
10
+ - Image Super Resolution - 256px to 1024px (4x Upscaling)
11
+
12
+ # Usage
13
+
14
+ Install the required libraries:
15
+ ```bash
16
+ pip install -q numpy pillow torch torchvision
17
+ pip install -q git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
18
+ ```
19
+
20
+ Import the required libraries:
21
+ ```py
22
+ import requests
23
+ from PIL import Image
24
+ import torch
25
+ import torch.nn as nn
26
+ import torch.nn.functional as F
27
+ from huggingface_hub import hf_hub_download
28
+ import matplotlib.pyplot as plt
29
+
30
+ # custom installation from this PR: https://github.com/huggingface/transformers/pull/34583
31
+ # !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
32
+ from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation
33
+ ```
34
+
35
+ Load the model and image processor:
36
+ ```py
37
+ # initialize model
38
+ config = DepthProConfig(use_fov_model=False)
39
+ model = DepthProForDepthEstimation(config)
40
+ features = config.fusion_hidden_size
41
+ semantic_classifier_dropout = 0.1
42
+ num_labels = 1
43
+ model.head.head = nn.Sequential(
44
+ nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
45
+ nn.BatchNorm2d(features),
46
+ nn.ReLU(),
47
+ nn.Dropout(semantic_classifier_dropout),
48
+ nn.Conv2d(features, features, kernel_size=1),
49
+ nn.ConvTranspose2d(features, num_labels, kernel_size=2, stride=2, padding=0, bias=True),
50
+ )
51
+
52
+ # load weights
53
+ weights_path = hf_hub_download(repo_id="geetu040/DepthPro_Segmentation_Human", filename="model_weights.pth")
54
+ model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'), weights_only=True))
55
+
56
+ # load to device
57
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
58
+ model = model.to(device)
59
+
60
+ # load image processor
61
+ image_processor = DepthProImageProcessorFast()
62
+ ```
63
+
64
+ Inference:
65
+ ```py
66
+ # inference
67
+
68
+ url = "https://huggingface.co/spaces/geetu040/DepthPro_Segmentation_Human/resolve/main/assets/examples/man_with_arms_open.jpg"
69
+
70
+ image = Image.open(requests.get(url, stream=True).raw)
71
+ image = image.convert("RGB")
72
+
73
+ # prepare image for the model
74
+ inputs = image_processor(images=image, return_tensors="pt")
75
+ inputs = {k: v.to(device) for k, v in inputs.items()}
76
+
77
+ # inference
78
+ with torch.no_grad():
79
+ output = model(**inputs)
80
+
81
+ # convert tensors to PIL.Image
82
+ output = output[0] # get output logits
83
+ output = F.interpolate(
84
+ output.unsqueeze(0),
85
+ size=(image.height, image.width)
86
+ ) # interpolate to match size
87
+ output = output.squeeze() # get first and only batch and channel
88
+ output = output.sigmoid() # apply sigmoid for binary segmentation
89
+ output = (output > 0.5).float() # threshold to create binary mask
90
+ output = output.cpu() # unload from cuda if used
91
+ output = output * 255 # convert [0, 1] to [0, 255]
92
+ output = output.numpy() # convert to numpy
93
+ output = output.astype('uint8') # convert to PIL.Image compatible format
94
+ output = Image.fromarray(output) # create PIL.Image object
95
+
96
+ # visualize the prediction
97
+ fig, axes = plt.subplots(1, 2, figsize=(20, 20))
98
+ axes[0].imshow(image)
99
+ axes[0].set_title(f'Low-Resolution (LR) {image.size}')
100
+ axes[0].axis('off')
101
+ axes[1].imshow(output)
102
+ axes[1].set_title(f'Super-Resolution (SR) {output.size}')
103
+ axes[1].axis('off')
104
+ plt.subplots_adjust(wspace=0, hspace=0)
105
+ plt.show()
106
+ ```