--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.50625 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5890 - Accuracy: 0.5062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 2.0332 | 0.25 | | No log | 2.0 | 20 | 1.9720 | 0.3125 | | No log | 3.0 | 30 | 1.8937 | 0.3688 | | No log | 4.0 | 40 | 1.8265 | 0.375 | | No log | 5.0 | 50 | 1.7561 | 0.3937 | | No log | 6.0 | 60 | 1.7083 | 0.45 | | No log | 7.0 | 70 | 1.6719 | 0.4375 | | No log | 8.0 | 80 | 1.6415 | 0.4688 | | No log | 9.0 | 90 | 1.6237 | 0.4813 | | No log | 10.0 | 100 | 1.6041 | 0.4938 | | No log | 11.0 | 110 | 1.5890 | 0.5062 | | No log | 12.0 | 120 | 1.5774 | 0.5 | | No log | 13.0 | 130 | 1.5700 | 0.5 | | No log | 14.0 | 140 | 1.5659 | 0.5062 | | No log | 15.0 | 150 | 1.5643 | 0.5062 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1