File size: 7,140 Bytes
9407f87 9c797a7 2546e4a 9c797a7 2546e4a 9407f87 9c797a7 f9c6bc7 2546e4a b02f45e 0c6100a b02f45e 9c797a7 b02f45e 9c797a7 b02f45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
base_model:
- unsloth/Llama-3.2-1B-Instruct
library_name: transformers
language:
- en
license: cc0-1.0
tags:
- unsloth
---
# A !!!!!disclaimer uh. for now, the experimentation does not lead me anywhere due to limit resources that I have and do not recommend to download this model. Working on working on it.
PEFT Finnegan-tuned LLaMA 3.2-1B-instruct on part of Finnegans Wake dataset for text generation in the style of James Joyce.
Space: https://huggingface.co/spaces/genaforvena/huivam_finnegans_spaceship
## Iteration 3:
Realized that was doing it all wrong and this tie used https://huggingface.co/unsloth/Llama-3.2-1B-Instruct and collab available from there. Only changed dataset.
My collab is here: https://colab.research.google.com/drive/1JrqcU9idXXR3Wru5mw2e6Uh2TKJWwu7U?usp=sharing
The only difference: Created dataset like below
```
from unsloth.chat_templates import get_chat_template
import json
import random
from transformers import AutoTokenizer
from unsloth.chat_templates import get_chat_template # For chat template formatting
from datasets import Dataset, load_dataset
# Configuration
INPUT_FILE = "finnegans_30.txt" # Path to your Finnegans Wake text file
OUTPUT_FILE = "finnegans_wake_dataset.jsonl" # Local file to save the dataset
CHUNK_SIZE = 24
# Apply the chat template
tokenizer = get_chat_template(
tokenizer,
chat_template="llama-3.1", # Use the LLaMA-3.1 chat template
)
# Load the text
with open(INPUT_FILE, "r", encoding="utf-8") as file:
text = file.read()
# Tokenize the text
tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False)
# Split tokens into chunks
chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)]
# Prepare dataset in conversational format
dataset = []
for chunk in chunks:
chunk_text = tokenizer.decode(chunk, skip_special_tokens=True)
# Split the chunk into three parts randomly
split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points
context = chunk_text[:split_points[0]]
instruction = chunk_text[split_points[0]:split_points[1]]
response = chunk_text[split_points[1]:]
# Format as a conversation
conversation = [
{"role": "user", "content": f"### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction}"},
{"role": "assistant", "content": response},
]
# Add to dataset
dataset.append({"conversations": conversation})
# Save dataset locally as a .jsonl file
with open(OUTPUT_FILE, "w", encoding="utf-8") as file:
for item in dataset:
json.dump(item, file)
file.write("\n")
print(f"Dataset saved locally to {OUTPUT_FILE}")
# Apply the formatting function
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=False) for convo in convos]
return {"text": texts}
# Apply the formatting function using Dataset.from_dict
dataset = Dataset.from_dict({"conversations": [d['conversations'] for d in dataset]})
formatted_dataset = dataset.map(formatting_prompts_func, batched=True, remove_columns=['conversations'])
# Save the formatted dataset
formatted_dataset.to_json("formatted_finnegans_wake_dataset.jsonl")
print("Formatted dataset saved to formatted_finnegans_wake_dataset.jsonl")
# Load the formatted dataset using load_dataset
dataset = load_dataset("json", data_files="formatted_finnegans_wake_dataset.jsonl", split="train")
dataset = dataset
```
## Iteration 2 (Fail):
Dataset: same (forgot to save config with new dataset).
finnetune.yaml:
```
# The ID of the dataset you created
dataset: huivam-finnegans-2
# Configuration for text completion fine-tuning
text_completion:
# How the fields of the JSON dataset should be formatted into the input text
input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
# How the fields of the JSON dataset should be formatted into the output text
output_template: "ANSWER: {response}"
# The Fireworks model name of the base model
base_model: accounts/fireworks/models/llama-v3p2-1b-instruct
```
Finne-tuning commands used:
```
./firectl create dataset huivam-finnegans-2 .\finnegans_wake_dataset_2.jsonl
./firectl create fine-tuning-job --settings-file finnetune.yaml --epochs=3 --learning-rate=2e-5 --batch-size=8
```
New params used to finne-tune:
```
Text Completion:
Input Template: ### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS:
Output Template: ANSWER: {response}
Base Model: accounts/fireworks/models/llama-v3p2-1b-instruct
Epochs: 3
Learning Rate: 2e-05
Lora Rank: 8
Batch Size: 8
Evaluation Split: 0
```
Spent: $0.08
Time: 5 mins
## Iteration 1:
Dataset I prepared like that:
```
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Load the text
with open(INPUT_FILE, "r", encoding="utf-8") as file:
text = file.read()
# Tokenize the text
tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False)
# Split tokens into chunks
chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)]
# Prepare dataset
dataset = []
for chunk in chunks:
chunk_text = tokenizer.decode(chunk, skip_special_tokens=True)
# Split the chunk into three parts randomly
split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points
context = chunk_text[:split_points[0]]
instruction = chunk_text[split_points[0]:split_points[1]]
response = chunk_text[split_points[1]:]
# Add to dataset
dataset.append({
"context": context,
"instruction": instruction,
"response": response,
})
# Save dataset locally as a .jsonl file
with open(OUTPUT_FILE, "w", encoding="utf-8") as file:
for item in dataset:
json.dump(item, file)
file.write("\n")
print(f"Dataset saved locally to {OUTPUT_FILE}")
```
Example of dataset entry:
```
{"context": "riverrun, past Eve and Adam's, from swerve of shore to bend of bay...", "instruction": "Sir Tristram, violer d'amores, fr'over the short sea...", "response": "O here here how hoth sprowled met the duskt the father of fornicationists..."}
```
fine-tuned on 1/10th of text on fireworks.ai with params:
```
dataset: finnegans_wake_dataset
text_completion:
# How the fields of the JSON dataset should be formatted into the input text
input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
# How the fields of the JSON dataset should be formatted into the output text
output_template: "ANSWER: {response}"
# The Fireworks model name of the base model
base_model: accounts/fireworks/models/llama-v3p2-1b
# Hyperparameters for fine-tuning (should be passed as args and removed from here)
hyperparameters:
learning_rate: 1e-5 # Learning rate for the optimizer
epochs: 1 # Number of epochs to train
batch_size: 4 # Batch size for training
```
Spent: $0.01
Time: 2 mins
Result: Seemingly not enough data to affect model output. |