--- base_model: - unsloth/Llama-3.2-1B-Instruct library_name: transformers language: - en license: cc0-1.0 tags: - unsloth - gguf --- ### WIP! Results for now are total trash and not worth your time! almost not working! Finnnegan's birth at best, but closer to him being concieved yet. Too far from his wake! No word-play at all! PEFT Finnegan-tuned LLaMA 3.2-1B-instruct on part of Finnegans Wake dataset for text generation in the style of James Joyce. Space: https://huggingface.co/spaces/genaforvena/huivam_finnegans_spaceship ## Iteration 3: Realized that was doing it all wrong and this tie used https://huggingface.co/unsloth/Llama-3.2-1B-Instruct and collab available from there. Only changed dataset. My collab is here: https://colab.research.google.com/drive/1JrqcU9idXXR3Wru5mw2e6Uh2TKJWwu7U?usp=sharing The only difference: Created dataset like below ``` from unsloth.chat_templates import get_chat_template import json import random from transformers import AutoTokenizer from unsloth.chat_templates import get_chat_template # For chat template formatting from datasets import Dataset, load_dataset # Configuration INPUT_FILE = "finnegans_30.txt" # Path to your Finnegans Wake text file OUTPUT_FILE = "finnegans_wake_dataset.jsonl" # Local file to save the dataset CHUNK_SIZE = 24 # Apply the chat template tokenizer = get_chat_template( tokenizer, chat_template="llama-3.1", # Use the LLaMA-3.1 chat template ) # Load the text with open(INPUT_FILE, "r", encoding="utf-8") as file: text = file.read() # Tokenize the text tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False) # Split tokens into chunks chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)] # Prepare dataset in conversational format dataset = [] for chunk in chunks: chunk_text = tokenizer.decode(chunk, skip_special_tokens=True) # Split the chunk into three parts randomly split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points context = chunk_text[:split_points[0]] instruction = chunk_text[split_points[0]:split_points[1]] response = chunk_text[split_points[1]:] # Format as a conversation conversation = [ {"role": "user", "content": f"### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction}"}, {"role": "assistant", "content": response}, ] # Add to dataset dataset.append({"conversations": conversation}) # Save dataset locally as a .jsonl file with open(OUTPUT_FILE, "w", encoding="utf-8") as file: for item in dataset: json.dump(item, file) file.write("\n") print(f"Dataset saved locally to {OUTPUT_FILE}") # Apply the formatting function def formatting_prompts_func(examples): convos = examples["conversations"] texts = [tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=False) for convo in convos] return {"text": texts} # Apply the formatting function using Dataset.from_dict dataset = Dataset.from_dict({"conversations": [d['conversations'] for d in dataset]}) formatted_dataset = dataset.map(formatting_prompts_func, batched=True, remove_columns=['conversations']) # Save the formatted dataset formatted_dataset.to_json("formatted_finnegans_wake_dataset.jsonl") print("Formatted dataset saved to formatted_finnegans_wake_dataset.jsonl") # Load the formatted dataset using load_dataset dataset = load_dataset("json", data_files="formatted_finnegans_wake_dataset.jsonl", split="train") dataset = dataset ``` ## Iteration 2 (Fail): Dataset: same (forgot to save config with new dataset). finnetune.yaml: ``` # The ID of the dataset you created dataset: huivam-finnegans-2 # Configuration for text completion fine-tuning text_completion: # How the fields of the JSON dataset should be formatted into the input text input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: " # How the fields of the JSON dataset should be formatted into the output text output_template: "ANSWER: {response}" # The Fireworks model name of the base model base_model: accounts/fireworks/models/llama-v3p2-1b-instruct ``` Finne-tuning commands used: ``` ./firectl create dataset huivam-finnegans-2 .\finnegans_wake_dataset_2.jsonl ./firectl create fine-tuning-job --settings-file finnetune.yaml --epochs=3 --learning-rate=2e-5 --batch-size=8 ``` New params used to finne-tune: ``` Text Completion: Input Template: ### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: Output Template: ANSWER: {response} Base Model: accounts/fireworks/models/llama-v3p2-1b-instruct Epochs: 3 Learning Rate: 2e-05 Lora Rank: 8 Batch Size: 8 Evaluation Split: 0 ``` Spent: $0.08 Time: 5 mins ## Iteration 1: Dataset I prepared like that: ``` # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # Load the text with open(INPUT_FILE, "r", encoding="utf-8") as file: text = file.read() # Tokenize the text tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False) # Split tokens into chunks chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)] # Prepare dataset dataset = [] for chunk in chunks: chunk_text = tokenizer.decode(chunk, skip_special_tokens=True) # Split the chunk into three parts randomly split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points context = chunk_text[:split_points[0]] instruction = chunk_text[split_points[0]:split_points[1]] response = chunk_text[split_points[1]:] # Add to dataset dataset.append({ "context": context, "instruction": instruction, "response": response, }) # Save dataset locally as a .jsonl file with open(OUTPUT_FILE, "w", encoding="utf-8") as file: for item in dataset: json.dump(item, file) file.write("\n") print(f"Dataset saved locally to {OUTPUT_FILE}") ``` Example of dataset entry: ``` {"context": "riverrun, past Eve and Adam's, from swerve of shore to bend of bay...", "instruction": "Sir Tristram, violer d'amores, fr'over the short sea...", "response": "O here here how hoth sprowled met the duskt the father of fornicationists..."} ``` fine-tuned on 1/10th of text on fireworks.ai with params: ``` dataset: finnegans_wake_dataset text_completion: # How the fields of the JSON dataset should be formatted into the input text input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: " # How the fields of the JSON dataset should be formatted into the output text output_template: "ANSWER: {response}" # The Fireworks model name of the base model base_model: accounts/fireworks/models/llama-v3p2-1b # Hyperparameters for fine-tuning (should be passed as args and removed from here) hyperparameters: learning_rate: 1e-5 # Learning rate for the optimizer epochs: 1 # Number of epochs to train batch_size: 4 # Batch size for training ``` Spent: $0.01 Time: 2 mins Result: Seemingly not enough data to affect model output.