DianLiI commited on
Commit
988b4da
1 Parent(s): 52277f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -10
README.md CHANGED
@@ -34,18 +34,54 @@ Here we briefly introduce the details of pre-training of ADIO.Protein 16B. For m
34
  # Results
35
 
36
 
37
- # How to Use
38
- # Build any downstream models from this backbone
39
-
40
- # Embedding
41
-
42
- # Token Level Classification
43
-
44
- # Sequence Level Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- # Protein-Protein Interaction
 
 
 
 
 
47
 
48
- # Sequence Level Regression
49
 
50
  # Or use our one-liner CLI to finetune or evaluate any of the above
51
 
 
34
  # Results
35
 
36
 
37
+ ## How to Use
38
+ ### Build any downstream models from this backbone
39
+ #### Embedding
40
+ ```python
41
+ from genbio_finetune.tasks import Embed
42
+ model = Embed.from_config({"model.backbone": "proteinfm"}).eval()
43
+ collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
44
+ embedding = model(collated_batch)
45
+ print(embedding.shape)
46
+ print(embedding)
47
+ ```
48
+ #### Sequence Level Classification
49
+ ```python
50
+ import torch
51
+ from genbio_finetune.tasks import SequenceClassification
52
+ model = SequenceClassification.from_config({"model.backbone": "proteinfm", "model.n_classes": 2}).eval()
53
+ collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
54
+ logits = model(collated_batch)
55
+ print(logits)
56
+ print(torch.argmax(logits, dim=-1))
57
+ ```
58
+ #### Token Level Classification
59
+ ```python
60
+ import torch
61
+ from genbio_finetune.tasks import TokenClassification
62
+ model = TokenClassification.from_config({"model.backbone": "proteinfm", "model.n_classes": 3}).eval()
63
+ collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
64
+ logits = model(collated_batch)
65
+ print(logits)
66
+ print(torch.argmax(logits, dim=-1))
67
+ ```
68
+ #### Regression
69
+ ```python
70
+ from genbio_finetune.tasks import SequenceRegression
71
+ model = SequenceRegression.from_config({"model.backbone": "proteinfm"}).eval()
72
+ collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
73
+ logits = model(collated_batch)
74
+ print(logits)
75
+ ```
76
+ #### Protein-Protein Interaction
77
 
78
+ #### Or use our one-liner CLI to finetune or evaluate any of the above!
79
+ ```
80
+ gbft fit --model SequenceClassification --model.backbone proteinfm --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
81
+ gbft test --model SequenceClassification --model.backbone proteinfm --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
82
+ ```
83
+ For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
84
 
 
85
 
86
  # Or use our one-liner CLI to finetune or evaluate any of the above
87