File size: 942 Bytes
cb952d3 3cf8dfb e9c60e9 3341267 cb952d3 7d4c082 e9c60e9 7d4c082 44dde53 7d4c082 44dde53 7d4c082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
---
datasets:
- genbio-ai/rna-downstream-tasks
base_model:
- genbio-ai/AIDO.RNA-1.6B-CDS
license: other
---
5-fold cross-validation LoRA fine-tuned checkpoints for protein abundance prediction (hsapiens).
## How to Use
### Download model
```python
from huggingface_hub import snapshot_download
from pathlib import Path
model_name = "genbio-ai/AIDO.RNA-1.6B-CDS-protein-abundance-hsapiens"
genbio_models_path = Path.home().joinpath('genbio_models', model_name)
genbio_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id=model_name, local_dir=genbio_models_path)
```
### Load model for inference
```python
from modelgenerator.tasks import SequenceRegression
ckpt_path = genbio_models_path.joinpath('fold0', 'model.ckpt')
model = SequenceRegression.load_from_checkpoint(ckpt_path, strict_loading=False).eval()
collated_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
logits = model(collated_batch)
print(logits) |