geninhu commited on
Commit
9f6ade5
1 Parent(s): 614ff10

Training in progress, step 4000

Browse files
.ipynb_checkpoints/run_speech_recognition_seq2seq_streaming-checkpoint.py ADDED
@@ -0,0 +1,703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence speech recognition
18
+ with 🤗 Datasets' streaming mode.
19
+ """
20
+ # You can also adapt this script for your own sequence to sequence speech
21
+ # recognition task. Pointers for this are left as comments.
22
+
23
+ import logging
24
+ import os
25
+ import sys
26
+ from dataclasses import dataclass, field
27
+ from typing import Any, Dict, List, Optional, Union
28
+
29
+ import datasets
30
+ import torch
31
+ from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset, Audio
32
+ from torch.utils.data import IterableDataset
33
+
34
+ import evaluate
35
+ import transformers
36
+ from transformers import (
37
+ AutoConfig,
38
+ AutoFeatureExtractor,
39
+ AutoModelForSpeechSeq2Seq,
40
+ AutoProcessor,
41
+ AutoTokenizer,
42
+ HfArgumentParser,
43
+ Seq2SeqTrainer,
44
+ Seq2SeqTrainingArguments,
45
+ TrainerCallback,
46
+ set_seed,
47
+ )
48
+ from transformers.trainer_pt_utils import IterableDatasetShard
49
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
50
+ from transformers.trainer_pt_utils import IterableDatasetShard
51
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
52
+ from transformers.utils import check_min_version, send_example_telemetry
53
+ from transformers.utils.versions import require_version
54
+
55
+
56
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
57
+ check_min_version("4.25.0.dev0")
58
+
59
+ require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
60
+
61
+ logger = logging.getLogger(__name__)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ config_name: Optional[str] = field(
74
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
75
+ )
76
+ tokenizer_name: Optional[str] = field(
77
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
78
+ )
79
+ feature_extractor_name: Optional[str] = field(
80
+ default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
81
+ )
82
+ cache_dir: Optional[str] = field(
83
+ default=None,
84
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
85
+ )
86
+ use_fast_tokenizer: bool = field(
87
+ default=True,
88
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
89
+ )
90
+ model_revision: str = field(
91
+ default="main",
92
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
93
+ )
94
+ use_auth_token: bool = field(
95
+ default=False,
96
+ metadata={
97
+ "help": (
98
+ "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
99
+ "with private models)."
100
+ )
101
+ },
102
+ )
103
+ freeze_feature_encoder: bool = field(
104
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
105
+ )
106
+ freeze_encoder: bool = field(
107
+ default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
108
+ )
109
+ forced_decoder_ids: List[List[int]] = field(
110
+ default=None,
111
+ metadata={
112
+ "help": (
113
+ "A list of pairs of integers which indicates a mapping from generation indices to token indices "
114
+ "that will be forced before sampling. For example, [[0, 123]] means the first generated token "
115
+ "will always be a token of index 123."
116
+ )
117
+ },
118
+ )
119
+ suppress_tokens: List[int] = field(
120
+ default=None, metadata={"help": "A list of tokens that will be suppressed at generation."}
121
+ )
122
+ model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."})
123
+
124
+
125
+ @dataclass
126
+ class DataTrainingArguments:
127
+ """
128
+ Arguments pertaining to what data we are going to input our model for training and eval.
129
+ """
130
+
131
+ dataset_name: str = field(
132
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
133
+ )
134
+ dataset_config_name: Optional[str] = field(
135
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
136
+ )
137
+ text_column: Optional[str] = field(
138
+ default=None,
139
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
140
+ )
141
+ max_train_samples: Optional[int] = field(
142
+ default=None,
143
+ metadata={
144
+ "help": (
145
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
146
+ "value if set."
147
+ )
148
+ },
149
+ )
150
+ max_eval_samples: Optional[int] = field(
151
+ default=None,
152
+ metadata={
153
+ "help": (
154
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
155
+ "value if set."
156
+ )
157
+ },
158
+ )
159
+ audio_column_name: str = field(
160
+ default="audio",
161
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
162
+ )
163
+ text_column_name: str = field(
164
+ default="text",
165
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
166
+ )
167
+ max_duration_in_seconds: float = field(
168
+ default=20.0,
169
+ metadata={
170
+ "help": (
171
+ "Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
172
+ " 'max_duration_in_seconds`"
173
+ )
174
+ },
175
+ )
176
+ min_duration_in_seconds: float = field(
177
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
178
+ )
179
+ train_split_name: str = field(
180
+ default="train",
181
+ metadata={
182
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
183
+ },
184
+ )
185
+ eval_split_name: str = field(
186
+ default="test",
187
+ metadata={
188
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
189
+ },
190
+ )
191
+ do_lower_case: bool = field(
192
+ default=False,
193
+ metadata={"help": "Whether the target text should be lower cased."},
194
+ )
195
+ do_remove_punctuation: bool = field(
196
+ default=False,
197
+ metadata={"help": "Whether the target text should be striped of punctuation."},
198
+ )
199
+ do_normalize_eval: bool = field(
200
+ default=True,
201
+ metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."},
202
+ )
203
+ language: str = field(
204
+ default=None,
205
+ metadata={
206
+ "help": (
207
+ "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
208
+ "only. For English speech recognition, it should be set to `None`."
209
+ )
210
+ },
211
+ )
212
+ task: str = field(
213
+ default="transcribe",
214
+ metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
215
+ )
216
+ shuffle_buffer_size: Optional[int] = field(
217
+ default=500,
218
+ metadata={
219
+ "help": (
220
+ "The number of streamed examples to download before shuffling them. The large the buffer, "
221
+ "the closer it is to real offline shuffling."
222
+ )
223
+ },
224
+ )
225
+ streaming: bool = field(
226
+ default=True,
227
+ metadata={"help": "Whether to use streaming mode to load and pre-process the data."},
228
+ )
229
+
230
+
231
+ @dataclass
232
+ class DataCollatorSpeechSeq2SeqWithPadding:
233
+ """
234
+ Data collator that will dynamically pad the inputs received.
235
+ Args:
236
+ processor ([`WhisperProcessor`])
237
+ The processor used for processing the data.
238
+ decoder_start_token_id (`int`)
239
+ The begin-of-sentence of the decoder.
240
+ """
241
+
242
+ processor: Any
243
+ decoder_start_token_id: int
244
+
245
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
246
+ # split inputs and labels since they have to be of different lengths and need
247
+ # different padding methods
248
+ model_input_name = self.processor.model_input_names[0]
249
+ input_features = [{model_input_name: feature[model_input_name]} for feature in features]
250
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
251
+
252
+ batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
253
+
254
+ labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
255
+
256
+ # replace padding with -100 to ignore loss correctly
257
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
258
+
259
+ # if bos token is appended in previous tokenization step,
260
+ # cut bos token here as it's append later anyways
261
+ if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
262
+ labels = labels[:, 1:]
263
+
264
+ batch["labels"] = labels
265
+
266
+ return batch
267
+
268
+
269
+ def load_maybe_streaming_dataset(dataset_name, dataset_config_name, split="train", streaming=True, **kwargs):
270
+ """
271
+ Utility function to load a dataset in streaming mode. For datasets with multiple splits,
272
+ each split is loaded individually and then splits combined by taking alternating examples from
273
+ each (interleaving).
274
+ """
275
+ if "+" in split:
276
+ # load multiple splits separated by the `+` symbol with streaming mode
277
+ dataset_splits = [
278
+ load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs)
279
+ for split_name in split.split("+")
280
+ ]
281
+ # dataset_splits = [dataset.cast_column("audio", Audio(sampling_rate))
282
+ # for dataset in dataset_splits]
283
+
284
+ # interleave multiple splits to form one dataset
285
+ interleaved_dataset = interleave_datasets(dataset_splits)
286
+ return interleaved_dataset
287
+ else:
288
+ # load a single split *with* streaming mode
289
+ dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=streaming, **kwargs)
290
+ # dataset = dataset.cast_column("audio", Audio(sampling_rate))
291
+ return dataset
292
+
293
+ def load_multiple_streaming_datasets(
294
+ dataset_names: List,
295
+ dataset_config_names: List,
296
+ splits: Optional[List] = None,
297
+ text_column_names: Optional[List] = None,
298
+ sampling_rate: Optional[int] = 16000,
299
+ stopping_strategy: Optional[str] = "all_exhausted",
300
+ **kwargs
301
+ ) -> IterableDataset:
302
+
303
+ if len(dataset_names) != len(dataset_config_names):
304
+ raise ValueError(
305
+ f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
306
+ f" {len(dataset_config_names)} configs."
307
+ )
308
+
309
+ if splits is not None and len(splits) != len(dataset_names):
310
+ raise ValueError(
311
+ f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
312
+ )
313
+
314
+ if text_column_names is not None and len(text_column_names) != len(dataset_names):
315
+ raise ValueError(
316
+ f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
317
+ f" {len(text_column_names)} text column names."
318
+ )
319
+
320
+ splits = splits if splits is not None else ["train" for i in range(len(dataset_names))]
321
+ text_column_names = (
322
+ text_column_names if text_column_names is not None else ["text" for i in range(len(dataset_names))]
323
+ )
324
+
325
+ all_datasets = []
326
+ # iterate over the datasets we want to interleave
327
+ for i, dataset_name in enumerate(dataset_names):
328
+ dataset = load_dataset(dataset_name, dataset_config_names[i], split=splits[i], streaming=True, **kwargs)
329
+ # resample to specified sampling rate
330
+ dataset = dataset.cast_column("audio", Audio(sampling_rate))
331
+ # normalise columns to ["audio", "sentence"]
332
+ if text_column_names[i] != "sentence":
333
+ dataset = dataset.rename_column(text_column_names[i], "sentence")
334
+ dataset = dataset.remove_columns(set(dataset.features.keys()) - set(["audio", "sentence"]))
335
+ all_datasets.append(dataset)
336
+
337
+ interleaved_dataset = interleave_datasets(all_datasets, stopping_strategy=stopping_strategy)
338
+ return interleaved_dataset
339
+
340
+ def main():
341
+ # 1. Parse input arguments
342
+ # See all possible arguments in src/transformers/training_args.py
343
+ # or by passing the --help flag to this script.
344
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
345
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
346
+
347
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
348
+ # If we pass only one argument to the script and it's the path to a json file,
349
+ # let's parse it to get our arguments.
350
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
351
+ else:
352
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
353
+
354
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
355
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
356
+ send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args)
357
+
358
+ # 2. Setup logging
359
+ logging.basicConfig(
360
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
361
+ datefmt="%m/%d/%Y %H:%M:%S",
362
+ handlers=[logging.StreamHandler(sys.stdout)],
363
+ )
364
+ log_level = training_args.get_process_log_level()
365
+ logger.setLevel(log_level)
366
+ datasets.utils.logging.set_verbosity(log_level)
367
+ transformers.utils.logging.set_verbosity(log_level)
368
+ transformers.utils.logging.enable_default_handler()
369
+ transformers.utils.logging.enable_explicit_format()
370
+
371
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
372
+
373
+ # Log on each process the small summary:
374
+ logger.warning(
375
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
376
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
377
+ )
378
+ logger.info(f"Training/evaluation parameters {training_args}")
379
+
380
+ # Set the verbosity to info of the Transformers logger (on main process only):
381
+ if is_main_process(training_args.local_rank):
382
+ transformers.utils.logging.set_verbosity_info()
383
+ logger.info("Training/evaluation parameters %s", training_args)
384
+
385
+ # 3. Detecting last checkpoint and eventually continue from last checkpoint
386
+ last_checkpoint = None
387
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
388
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
389
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
390
+ raise ValueError(
391
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
392
+ "Use --overwrite_output_dir to overcome."
393
+ )
394
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
395
+ logger.info(
396
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
397
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
398
+ )
399
+
400
+ # Set seed before initializing model.
401
+ set_seed(training_args.seed)
402
+
403
+ # # 4. Load dataset
404
+ # raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
405
+
406
+ # if training_args.do_train:
407
+ # raw_datasets["train"] = load_maybe_streaming_dataset(
408
+ # data_args.dataset_name,
409
+ # data_args.dataset_config_name,
410
+ # split=data_args.train_split_name,
411
+ # use_auth_token=True if model_args.use_auth_token else None,
412
+ # streaming=data_args.streaming,
413
+ # )
414
+
415
+ # 4. Load dataset
416
+ dataset_names = ["mozilla-foundation/common_voice_11_0", "mozilla-foundation/common_voice_11_0", "google/fleurs", "google/fleurs", "google/fleurs", "vivos", "vivos"]
417
+ dataset_config_names = ["vi", "vi", "vi_vn", "vi_vn", "vi_vn", "", ""]
418
+ text_column_names = ["sentence", "sentence", "raw_transcription", "raw_transcription", "raw_transcription", "sentence", "sentence"]
419
+ splits = ['train', 'validation', 'train', 'validation', 'test', 'train', 'test']
420
+
421
+ raw_datasets = IterableDatasetDict()
422
+
423
+ if training_args.do_train:
424
+ raw_datasets["train"] = load_multiple_streaming_datasets(
425
+ dataset_names,
426
+ splits=splits,
427
+ dataset_config_names=dataset_config_names,
428
+ text_column_names=text_column_names,
429
+ sampling_rate=16000,
430
+ use_auth_token=True)
431
+
432
+ if training_args.do_eval:
433
+ # raw_datasets["eval"] = load_maybe_streaming_dataset(
434
+ # data_args.dataset_name,
435
+ # data_args.dataset_config_name,
436
+ # split=data_args.eval_split_name,
437
+ # use_auth_token=True if model_args.use_auth_token else None,
438
+ # streaming=data_args.streaming,
439
+ # )
440
+
441
+ raw_datasets["eval"] = load_multiple_streaming_datasets(
442
+ ["mozilla-foundation/common_voice_11_0"],
443
+ splits=['test'],
444
+ dataset_config_names=["vi"],
445
+ text_column_names=["sentence"],
446
+ sampling_rate=16000,
447
+ use_auth_token=True if model_args.use_auth_token else None)
448
+
449
+ raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
450
+
451
+ if data_args.audio_column_name not in raw_datasets_features:
452
+ raise ValueError(
453
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
454
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
455
+ f"{', '.join(raw_datasets_features)}."
456
+ )
457
+
458
+ if data_args.text_column_name not in raw_datasets_features:
459
+ raise ValueError(
460
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
461
+ "Make sure to set `--text_column_name` to the correct text column - one of "
462
+ f"{', '.join(raw_datasets_features)}."
463
+ )
464
+
465
+ # 5. Load pretrained model, tokenizer, and feature extractor
466
+ #
467
+ # Distributed training:
468
+ # The .from_pretrained methods guarantee that only one local process can concurrently
469
+ config = AutoConfig.from_pretrained(
470
+ model_args.config_name if model_args.config_name else model_args.model_name_or_path,
471
+ cache_dir=model_args.cache_dir,
472
+ revision=model_args.model_revision,
473
+ use_auth_token=True if model_args.use_auth_token else None,
474
+ )
475
+
476
+ config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
477
+
478
+ if training_args.gradient_checkpointing:
479
+ config.update({"use_cache": False})
480
+
481
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
482
+ model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
483
+ cache_dir=model_args.cache_dir,
484
+ revision=model_args.model_revision,
485
+ use_auth_token=True if model_args.use_auth_token else None,
486
+ )
487
+ tokenizer = AutoTokenizer.from_pretrained(
488
+ model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
489
+ cache_dir=model_args.cache_dir,
490
+ use_fast=model_args.use_fast_tokenizer,
491
+ revision=model_args.model_revision,
492
+ use_auth_token=True if model_args.use_auth_token else None,
493
+ )
494
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
495
+ model_args.model_name_or_path,
496
+ config=config,
497
+ cache_dir=model_args.cache_dir,
498
+ revision=model_args.model_revision,
499
+ use_auth_token=True if model_args.use_auth_token else None,
500
+ )
501
+
502
+ if model.config.decoder_start_token_id is None:
503
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
504
+
505
+ if model_args.freeze_feature_encoder:
506
+ model.freeze_feature_encoder()
507
+
508
+ if model_args.freeze_encoder:
509
+ model.freeze_encoder()
510
+
511
+ if data_args.language is not None:
512
+ # We only need to set the task id when the language is specified (i.e. in a multilingual setting)
513
+ tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task)
514
+
515
+ # 6. Resample speech dataset if necessary
516
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
517
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
518
+ raw_datasets = raw_datasets.cast_column(
519
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
520
+ )
521
+
522
+ # 7. Preprocessing the datasets.
523
+ # We need to read the audio files as arrays and tokenize the targets.
524
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
525
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
526
+ audio_column_name = data_args.audio_column_name
527
+ text_column_name = data_args.text_column_name
528
+ model_input_name = feature_extractor.model_input_names[0]
529
+ do_lower_case = data_args.do_lower_case
530
+ do_remove_punctuation = data_args.do_remove_punctuation
531
+ normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI
532
+
533
+ if data_args.max_train_samples is not None:
534
+ raw_datasets["train"] = (
535
+ raw_datasets["train"].take(data_args.max_train_samples)
536
+ if data_args.streaming
537
+ else raw_datasets["train"].select(range(data_args.max_train_samples))
538
+ )
539
+
540
+ if data_args.max_eval_samples is not None:
541
+ raw_datasets["eval"] = (
542
+ raw_datasets["eval"].take(data_args.max_eval_samples)
543
+ if data_args.streaming
544
+ else raw_datasets["eval"].select(range(data_args.max_eval_samples))
545
+ )
546
+
547
+ def prepare_dataset(batch):
548
+ # process audio
549
+ sample = batch[audio_column_name]
550
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
551
+ # process audio length
552
+ batch[model_input_name] = inputs.get(model_input_name)[0]
553
+ batch["input_length"] = len(sample["array"])
554
+
555
+ # process targets
556
+ input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
557
+ if do_remove_punctuation:
558
+ input_str = normalizer(input_str).strip()
559
+ batch["labels"] = tokenizer(input_str).input_ids
560
+ return batch
561
+
562
+ with training_args.main_process_first(desc="dataset map pre-processing"):
563
+ vectorized_datasets = raw_datasets.map(
564
+ prepare_dataset,
565
+ remove_columns=raw_datasets_features,
566
+ ).with_format("torch")
567
+
568
+ if training_args.do_train and data_args.streaming:
569
+ # manually shuffle if streaming (done by the trainer for non-streaming)
570
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
571
+ buffer_size=data_args.shuffle_buffer_size,
572
+ seed=training_args.seed,
573
+ )
574
+
575
+ # filter training data that is shorter than min_input_length or longer than
576
+ # max_input_length
577
+ def is_audio_in_length_range(length):
578
+ return min_input_length < length < max_input_length
579
+
580
+ vectorized_datasets["train"] = vectorized_datasets["train"].filter(
581
+ is_audio_in_length_range,
582
+ input_columns=["input_length"],
583
+ )
584
+
585
+ # 8. Load Metric
586
+ wer_metric = evaluate.load("wer")
587
+ cer_metric = evaluate.load("cer")
588
+ do_normalize_eval = data_args.do_normalize_eval
589
+
590
+ def compute_metrics(pred):
591
+ pred_ids = pred.predictions
592
+
593
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
594
+
595
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
596
+ # we do not want to group tokens when computing the metrics
597
+ label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
598
+
599
+ if do_normalize_eval:
600
+ pred_str = [normalizer(pred) for pred in pred_str]
601
+ label_str = [normalizer(label) for label in label_str]
602
+
603
+ wer = 100 * wer_metric.compute(predictions=pred_str, references=label_str)
604
+ cer = 100 * cer_metric.compute(predictions=pred_str, references=label_str)
605
+
606
+ return {"wer": wer, "cer": cer}
607
+
608
+ # 9. Create a single speech processor
609
+ if is_main_process(training_args.local_rank):
610
+ # save feature extractor, tokenizer and config
611
+ feature_extractor.save_pretrained(training_args.output_dir)
612
+ tokenizer.save_pretrained(training_args.output_dir)
613
+ config.save_pretrained(training_args.output_dir)
614
+
615
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
616
+
617
+ # 10. Define data collator
618
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
619
+ processor=processor,
620
+ decoder_start_token_id=model.config.decoder_start_token_id,
621
+ )
622
+
623
+ # 11. Configure Trainer
624
+ # Trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch
625
+ # Only required for streaming: Trainer automatically shuffles non-streaming datasets
626
+ class ShuffleCallback(TrainerCallback):
627
+ def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
628
+ if isinstance(train_dataloader.dataset, IterableDatasetShard):
629
+ pass # set_epoch() is handled by the Trainer
630
+ elif isinstance(train_dataloader.dataset, IterableDataset):
631
+ train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
632
+
633
+ # Initialize Trainer
634
+ trainer = Seq2SeqTrainer(
635
+ model=model,
636
+ args=training_args,
637
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
638
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
639
+ tokenizer=feature_extractor,
640
+ data_collator=data_collator,
641
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
642
+ callbacks=[ShuffleCallback()] if data_args.streaming else None,
643
+ )
644
+
645
+ # 12. Training
646
+ if training_args.do_train:
647
+ checkpoint = None
648
+ if training_args.resume_from_checkpoint is not None:
649
+ checkpoint = training_args.resume_from_checkpoint
650
+ elif last_checkpoint is not None:
651
+ checkpoint = last_checkpoint
652
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
653
+ trainer.save_model() # Saves the feature extractor too for easy upload
654
+
655
+ metrics = train_result.metrics
656
+ if data_args.max_train_samples:
657
+ metrics["train_samples"] = data_args.max_train_samples
658
+ trainer.log_metrics("train", metrics)
659
+ trainer.save_metrics("train", metrics)
660
+ trainer.save_state()
661
+
662
+ # 13. Evaluation
663
+ results = {}
664
+ if training_args.do_eval:
665
+ logger.info("*** Evaluate ***")
666
+ metrics = trainer.evaluate(
667
+ metric_key_prefix="eval",
668
+ max_length=training_args.generation_max_length,
669
+ num_beams=training_args.generation_num_beams,
670
+ )
671
+ if data_args.max_eval_samples:
672
+ metrics["eval_samples"] = data_args.max_eval_samples
673
+
674
+ trainer.log_metrics("eval", metrics)
675
+ trainer.save_metrics("eval", metrics)
676
+
677
+ # 14. Write Training Stats
678
+ kwargs = {
679
+ "finetuned_from": model_args.model_name_or_path,
680
+ "tasks": "automatic-speech-recognition",
681
+ "tags": "whisper-event",
682
+ }
683
+ if data_args.dataset_name is not None:
684
+ kwargs["dataset_tags"] = data_args.dataset_name
685
+ if data_args.dataset_config_name is not None:
686
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
687
+ else:
688
+ kwargs["dataset"] = data_args.dataset_name
689
+ if "common_voice" in data_args.dataset_name:
690
+ kwargs["language"] = data_args.dataset_config_name[:2]
691
+ if model_args.model_index_name is not None:
692
+ kwargs["model_name"] = model_args.model_index_name
693
+
694
+ if training_args.push_to_hub:
695
+ trainer.push_to_hub(**kwargs)
696
+ else:
697
+ trainer.create_model_card(**kwargs)
698
+
699
+ return results
700
+
701
+
702
+ if __name__ == "__main__":
703
+ main()
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bd60899c1c374c82f509ab86f9efa920c1f220bc163a7efa4ed05d174fe04001
3
  size 6173655480
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12f292f88d9506f92caebc9f3c451c528db43aad08a1597c1d039d382b46ef95
3
  size 6173655480
run_speech_recognition_seq2seq_streaming.py CHANGED
@@ -413,10 +413,10 @@ def main():
413
  # )
414
 
415
  # 4. Load dataset
416
- dataset_names = ["mozilla-foundation/common_voice_11_0", "mozilla-foundation/common_voice_11_0", "google/fleurs", "google/fleurs", "google/fleurs"]
417
- dataset_config_names = ["vi", "vi", "vi_vn", "vi_vn", "vi_vn"]
418
- text_column_names = ["sentence", "sentence", "raw_transcription", "raw_transcription", "raw_transcription"]
419
- splits = ['train', 'validation', 'train', 'validation', 'test']
420
 
421
  raw_datasets = IterableDatasetDict()
422
 
 
413
  # )
414
 
415
  # 4. Load dataset
416
+ dataset_names = ["mozilla-foundation/common_voice_11_0", "mozilla-foundation/common_voice_11_0", "google/fleurs", "google/fleurs", "google/fleurs", "vivos", "vivos"]
417
+ dataset_config_names = ["vi", "vi", "vi_vn", "vi_vn", "vi_vn", "", ""]
418
+ text_column_names = ["sentence", "sentence", "raw_transcription", "raw_transcription", "raw_transcription", "sentence", "sentence"]
419
+ splits = ['train', 'validation', 'train', 'validation', 'test', 'train', 'test']
420
 
421
  raw_datasets = IterableDatasetDict()
422
 
runs/Dec09_13-54-47_132-145-179-103/events.out.tfevents.1670594111.132-145-179-103.2897147.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:36e9b7b4908dd7d012cbef75d35eb0aa7014ebdac315354c2d0c297c1a89bc82
3
- size 25195
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ec738ccfc427dd1a33ec96338d16064e04788623a5b86cfa7305d3bcd1485d1
3
+ size 32205