File size: 1,802 Bytes
5012e22 d2f4d5b 5012e22 d2f4d5b 5012e22 d2f4d5b 5012e22 d2f4d5b 5012e22 d2f4d5b 5012e22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-medium
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7427
- Wer: 19.3902
- Cer: 8.7285
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|
| 0.0471 | 1.05 | 1000 | 0.5961 | 20.2895 | 8.9820 |
| 0.0194 | 2.11 | 2000 | 1.0999 | 22.6146 | 9.7105 |
| 0.002 | 4.02 | 3000 | 0.7289 | 20.2018 | 8.8379 |
| 0.0006 | 5.07 | 4000 | 0.7791 | 19.3683 | 8.4376 |
| 0.0003 | 6.13 | 5000 | 0.7427 | 19.3902 | 8.7285 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|