--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-medium results: [] --- # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6150 - Wer: 20.4979 - Cer: 8.9847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.1041 | 0.2 | 1000 | 0.5133 | 22.6146 | 9.7131 | | 0.074 | 1.11 | 2000 | 0.5532 | 21.6166 | 9.4196 | | 0.0796 | 2.02 | 3000 | 0.6025 | 21.3314 | 9.2435 | | 0.0422 | 2.22 | 4000 | 0.6029 | 20.7392 | 9.0274 | | 0.0517 | 3.13 | 5000 | 0.6150 | 20.4979 | 8.9847 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2