--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-medium results: [] --- # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7427 - Wer: 19.3902 - Cer: 8.7285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.0471 | 1.05 | 1000 | 0.5961 | 20.2895 | 8.9820 | | 0.0194 | 2.11 | 2000 | 1.0999 | 22.6146 | 9.7105 | | 0.002 | 4.02 | 3000 | 0.7289 | 20.2018 | 8.8379 | | 0.0006 | 5.07 | 4000 | 0.7791 | 19.3683 | 8.4376 | | 0.0003 | 6.13 | 5000 | 0.7427 | 19.3902 | 8.7285 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2