File size: 4,022 Bytes
796fad1 d3f2fdb 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 8fc2b4e 796fad1 d3f2fdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import openai
import numpy as np
from tempfile import NamedTemporaryFile
import copy
import shapely
from shapely.geometry import *
from shapely.affinity import *
from omegaconf import OmegaConf
from moviepy.editor import ImageSequenceClip
import gradio as gr
from consts import ALL_BLOCKS, ALL_BOWLS
from md_logger import MarkdownLogger
import numpy as np
import os
import hydra
import random
import re
import openai
import IPython
import time
import pybullet as p
import traceback
from datetime import datetime
from pprint import pprint
import cv2
import re
import random
import json
from gensim.agent import Agent
from gensim.critic import Critic
from gensim.sim_runner import SimulationRunner
from gensim.memory import Memory
from gensim.utils import set_gpt_model, clear_messages
class DemoRunner:
def __init__(self):
self._env = None
def setup(self, api_key):
openai.api_key = api_key
cfg['model_output_dir'] = 'temp'
cfg['prompt_folder'] = 'topdown_task_generation_prompt_simple_singleprompt'
set_gpt_model(cfg['gpt_model'])
cfg['load_memory'] = True
cfg['task_description_candidate_num'] = 10
cfg['record']['save_video'] = True
memory = Memory(cfg)
agent = Agent(cfg, memory)
critic = Critic(cfg, memory)
self.simulation_runner = SimulationRunner(cfg, agent, critic, memory)
info = '### Build'
img = np.zeros((720, 640, 0))
return info, img
def run(self, instruction):
cfg['target_task_name'] = instruction
self._env.cache_video = []
self._md_logger.clear()
try:
self.simulation_runner.task_creation()
self.simulation_runner.simulate_task()
except Exception as e:
return f'Error: {e}', None, None
video_file_name = None
if self._env.cache_video:
rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25)
video_file_name = NamedTemporaryFile(suffix='.mp4').name
rendered_clip.write_videofile(video_file_name, fps=25)
return self.simulation_runner.chat_log, self.simulation_runner.env.curr_video, video_file_name
def setup(api_key):
if not api_key:
return 'Please enter your OpenAI API key!', None, None
demo_runner = DemoRunner()
info, img = demo_runner.setup(api_key)
return info, img, demo_runner
def run(instruction, demo_runner):
if demo_runner is None:
return 'Please run setup first!', None, None
return demo_runner.run(instruction)
if __name__ == '__main__':
with open('README.md', 'r') as f:
for _ in range(12):
next(f)
readme_text = f.read()
with gr.Blocks() as demo:
state = gr.State(None)
gr.Markdown(readme_text)
gr.Markdown('# Interactive Demo')
with gr.Row():
with gr.Column():
with gr.Row():
inp_api_key = gr.Textbox(label='OpenAI API Key (this is not stored anywhere)', lines=1)
btn_setup = gr.Button("Setup/Reset Simulation")
info_setup = gr.Markdown(label='Setup Info')
with gr.Column():
img_setup = gr.Image(label='Current Simulation')
with gr.Row():
with gr.Column():
inp_instruction = gr.Textbox(label='Task Name', lines=1)
btn_run = gr.Button("Run (this may take 30+ seconds)")
info_run = gr.Markdown(label='Generated Code')
with gr.Column():
video_run = gr.Video(label='Video of Last Instruction')
btn_setup.click(
setup,
inputs=[inp_api_key],
outputs=[info_setup, img_setup, state]
)
btn_run.click(
run,
inputs=[inp_instruction, state],
outputs=[info_run, img_setup, video_run]
)
demo.queue().launch(show_error=True) |